产品: PRKAG1/2/3 抗体
货号: DF3214
描述: Rabbit polyclonal antibody to PRKAG1/2/3
应用: WB IF/ICC
反应: Human, Mouse, Rat
预测: Pig, Zebrafish, Bovine, Sheep, Rabbit, Dog, Chicken, Xenopus
分子量: 38 KD; 38kD,63kD,54kD(Calculated).
蛋白号: P54619 | Q9UGJ0 | Q9UGI9
RRID: AB_2835594

浏览相似产品>>

   规格 价格 库存
 50ul RMB¥ 1250 现货
 100ul RMB¥ 2300 现货
 200ul RMB¥ 3000 现货

货期: 当天发货

联系销售

产品描述

来源:
Rabbit
应用:
WB 1:500-1:1000, IF/ICC 1:100-1:500
*The optimal dilutions should be determined by the end user.
*Tips:

WB: 适用于变性蛋白样本的免疫印迹检测. IHC: 适用于组织样本的石蜡(IHC-p)或冰冻(IHC-f)切片样本的免疫组化/荧光检测. IF/ICC: 适用于细胞样本的荧光检测. ELISA(peptide): 适用于抗原肽的ELISA检测.

反应:
Human,Mouse,Rat
预测:
Pig(100%), Zebrafish(91%), Bovine(100%), Sheep(100%), Rabbit(100%), Dog(100%), Chicken(100%), Xenopus(90%)
克隆:
Polyclonal
特异性:
PRKAG1/2/3 Antibody detects endogenous levels of total PRKAG1/2/3.
RRID:
AB_2835594
引用格式: Affinity Biosciences Cat# DF3214, RRID:AB_2835594.
偶联:
Unconjugated.
纯化:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
保存:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
别名:

展开/折叠

5' AMP activated protein kinase gamma 1 subunit; 5' AMP activated protein kinase subunit gamma 1; 5''-AMP-activated protein kinase subunit gamma-1; AAKG1_HUMAN; AMP activated protein kinase noncatalytic gamma 1 subunit; AMPK gamma 1 chain; AMPK gamma1; AMPK subunit gamma-1; AMPKg; MGC8666; PRKAG 1; PRKAG1; Protein kinase AMP activated gamma 1 non catalytic subunit; protein kinase, AMP-activated, noncatalytic gamma-1; 5''-AMP-activated protein kinase subunit gamma-2; AAKG; AAKG2; AAKG2_HUMAN; AMPK gamma2; AMPK subunit gamma 2; AMPK subunit gamma-2; CMH6; H91620p; Prkag2; Protein kinase AMP activated gamma 2 non catalytic subunit; WPWS; 5 AMP activated protein kinase subunit gamma 3; 5''-AMP-activated protein kinase subunit gamma-3; AAKG3_HUMAN; AMPK gamma 3 chain; AMPK gamma3; AMPK subunit gamma-3; AMPKG3; PRKAG3; Protein kinase AMP activated gamma 3 non catalytic subunit;

抗原和靶标

免疫原:
Uniprot:
基因/基因ID:
表达:
Q9UGJ0 AAKG2_HUMAN:

Isoform B is ubiquitously expressed except in liver and thymus. The highest level is detected in heart with abundant expression in placenta and testis.

Q9UGI9 AAKG3_HUMAN:

Skeletal muscle, with weak expression in heart and pancreas.

序列:
METVISSDSSPAVENEHPQETPESNNSVYTSFMKSHRCYDLIPTSSKLVVFDTSLQVKKAFFALVTNGVRAAPLWDSKKQSFVGMLTITDFINILHRYYKSALVQIYELEEHKIETWREVYLQDSFKPLVCISPNASLFDAVSSLIRNKIHRLPVIDPESGNTLYILTHKRILKFLKLFITEFPKPEFMSKSLEELQIGTYANIAMVRTTTPVYVALGIFVQHRVSALPVVDEKGRVVDIYSKFDVINLAAEKTYNNLDVSVTKALQHRSHYFEGVLKCYLHETLETIINRLVEAEVHRLVVVDENDVVKGIVSLSDILQALVLTGGEKKP

MGSAVMDTKKKKDVSSPGGSGGKKNASQKRRSLRVHIPDLSSFAMPLLDGDLEGSGKHSSRKVDSPFGPGSPSKGFFSRGPQPRPSSPMSAPVRPKTSPGSPKTVFPFSYQESPPRSPRRMSFSGIFRSSSKESSPNSNPATSPGGIRFFSRSRKTSGLSSSPSTPTQVTKQHTFPLESYKHEPERLENRIYASSSPPDTGQRFCPSSFQSPTRPPLASPTHYAPSKAAALAAALGPAEAGMLEKLEFEDEAVEDSESGVYMRFMRSHKCYDIVPTSSKLVVFDTTLQVKKAFFALVANGVRAAPLWESKKQSFVGMLTITDFINILHRYYKSPMVQIYELEEHKIETWRELYLQETFKPLVNISPDASLFDAVYSLIKNKIHRLPVIDPISGNALYILTHKRILKFLQLFMSDMPKPAFMKQNLDELGIGTYHNIAFIHPDTPIIKALNIFVERRISALPVVDESGKVVDIYSKFDVINLAAEKTYNNLDITVTQALQHRSQYFEGVVKCNKLEILETIVDRIVRAEVHRLVVVNEADSIVGIISLSDILQALILTPAGAKQKETETE

MEPGLEHALRRTPSWSSLGGSEHQEMSFLEQENSSSWPSPAVTSSSERIRGKRRAKALRWTRQKSVEEGEPPGQGEGPRSRPAAESTGLEATFPKTTPLAQADPAGVGTPPTGWDCLPSDCTASAAGSSTDDVELATEFPATEAWECELEGLLEERPALCLSPQAPFPKLGWDDELRKPGAQIYMRFMQEHTCYDAMATSSKLVIFDTMLEIKKAFFALVANGVRAAPLWDSKKQSFVGMLTITDFILVLHRYYRSPLVQIYEIEQHKIETWREIYLQGCFKPLVSISPNDSLFEAVYTLIKNRIHRLPVLDPVSGNVLHILTHKRLLKFLHIFGSLLPRPSFLYRTIQDLGIGTFRDLAVVLETAPILTALDIFVDRRVSALPVVNECGQVVGLYSRFDVIHLAAQQTYNHLDMSVGEALRQRTLCLEGVLSCQPHESLGEVIDRIAREQVHRLVLVDETQHLLGVVSLSDILQALVLSPAGIDALGA

种属预测

种属预测:

score>80的预测可信度较高,可尝试用于WB检测。*预测模型主要基于免疫原序列比对,结果仅作参考,不作为质保凭据。

Species
Results
Score
Pig
100
Bovine
100
Sheep
100
Dog
100
Chicken
100
Rabbit
100
Zebrafish
91
Xenopus
90
Horse
0
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

翻译修饰 - P54619/Q9UGJ0/Q9UGI9 作为底物

Site PTM Type Enzyme
S10 Phosphorylation
K34 Methylation
K34 Ubiquitination
K78 Ubiquitination
Y107 Phosphorylation
K170 Ubiquitination
K174 Ubiquitination
K234 Ubiquitination
K243 Ubiquitination
K253 Ubiquitination
K264 Acetylation
K264 Ubiquitination
Y272 Phosphorylation
K329 Ubiquitination
K330 Ubiquitination
Site PTM Type Enzyme
S32 Phosphorylation
S41 Phosphorylation
S42 Phosphorylation
S55 Phosphorylation
K62 Methylation
S65 Phosphorylation
S71 Phosphorylation
S73 Phosphorylation
S86 Phosphorylation
S87 Phosphorylation
S90 Phosphorylation
T97 Phosphorylation
S98 Phosphorylation
S101 Phosphorylation
S109 Phosphorylation
S117 Phosphorylation
S122 Phosphorylation
S129 Phosphorylation
S130 Phosphorylation
S131 Phosphorylation
S135 Phosphorylation
T142 Phosphorylation
S143 Phosphorylation
S151 Phosphorylation
S153 Phosphorylation
T156 Phosphorylation
S157 Phosphorylation
S160 Phosphorylation
S161 Phosphorylation
S162 Phosphorylation
S164 Phosphorylation
T165 Phosphorylation
T167 Phosphorylation
Y180 Phosphorylation
S196 Phosphorylation
S211 Phosphorylation
S219 Phosphorylation
Y223 Phosphorylation
S309 Phosphorylation
K475 Ubiquitination
Site PTM Type Enzyme
K233 Ubiquitination
T323 Phosphorylation

研究背景

功能:

AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Gamma non-catalytic subunit mediates binding to AMP, ADP and ATP, leading to activate or inhibit AMPK: AMP-binding results in allosteric activation of alpha catalytic subunit (PRKAA1 or PRKAA2) both by inducing phosphorylation and preventing dephosphorylation of catalytic subunits. ADP also stimulates phosphorylation, without stimulating already phosphorylated catalytic subunit. ATP promotes dephosphorylation of catalytic subunit, rendering the AMPK enzyme inactive.

翻译修饰:

Phosphorylated by ULK1 and ULK2; leading to negatively regulate AMPK activity and suggesting the existence of a regulatory feedback loop between ULK1, ULK2 and AMPK.

亚基结构:

AMPK is a heterotrimer of an alpha catalytic subunit (PRKAA1 or PRKAA2), a beta (PRKAB1 or PRKAB2) and a gamma non-catalytic subunits (PRKAG1, PRKAG2 or PRKAG3). Interacts with FNIP1 and FNIP2.

蛋白家族:

The AMPK pseudosubstrate motif resembles the sequence around sites phosphorylated on target proteins of AMPK, except the presence of a non-phosphorylatable residue in place of Ser. In the absence of AMP this pseudosubstrate sequence may bind to the active site groove on the alpha subunit (PRKAA1 or PRKAA2), preventing phosphorylation by the upstream activating kinase STK11/LKB1.

The 4 CBS domains mediate binding to nucleotides. Of the 4 potential nucleotide-binding sites, 3 are occupied, designated as sites 1, 3, and 4 based on the CBS modules that provide the acidic residue for coordination with the 2'- and 3'-hydroxyl groups of the ribose of AMP. Of these, site 4 appears to be a structural site that retains a tightly held AMP molecule (AMP 3). The 2 remaining sites, 1 and 3, can bind either AMP, ADP or ATP. Site 1 (AMP, ADP or ATP 1) is the high-affinity binding site and likely accommodates AMP or ADP. Site 3 (AMP, ADP or ATP 2) is the weakest nucleotide-binding site on the gamma subunit, yet it is exquisitely sensitive to changes in nucleotide levels and this allows AMPK to respond rapidly to changes in cellular energy status. Site 3 is likely to be responsible for protection of a conserved threonine in the activation loop of the alpha catalytic subunit through conformational changes induced by binding of AMP or ADP.

Belongs to the 5'-AMP-activated protein kinase gamma subunit family.

功能:

AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Gamma non-catalytic subunit mediates binding to AMP, ADP and ATP, leading to activate or inhibit AMPK: AMP-binding results in allosteric activation of alpha catalytic subunit (PRKAA1 or PRKAA2) both by inducing phosphorylation and preventing dephosphorylation of catalytic subunits. ADP also stimulates phosphorylation, without stimulating already phosphorylated catalytic subunit. ATP promotes dephosphorylation of catalytic subunit, rendering the AMPK enzyme inactive.

翻译修饰:

Phosphorylated by ULK1; leading to negatively regulate AMPK activity and suggesting the existence of a regulatory feedback loop between ULK1 and AMPK.

组织特异性:

Isoform B is ubiquitously expressed except in liver and thymus. The highest level is detected in heart with abundant expression in placenta and testis.

亚基结构:

AMPK is a heterotrimer of an alpha catalytic subunit (PRKAA1 or PRKAA2), a beta (PRKAB1 or PRKAB2) and a gamma non-catalytic subunits (PRKAG1, PRKAG2 or PRKAG3). Interacts with FNIP1 and FNIP2.

蛋白家族:

The AMPK pseudosubstrate motif resembles the sequence around sites phosphorylated on target proteins of AMPK, except the presence of a non-phosphorylatable residue in place of Ser. In the absence of AMP this pseudosubstrate sequence may bind to the active site groove on the alpha subunit (PRKAA1 or PRKAA2), preventing phosphorylation by the upstream activating kinase STK11/LKB1.

The 4 CBS domains mediate binding to nucleotides. Of the 4 potential nucleotide-binding sites, 3 are occupied, designated as sites 1, 3, and 4 based on the CBS modules that provide the acidic residue for coordination with the 2'- and 3'-hydroxyl groups of the ribose of AMP. Of these, site 4 appears to be a structural site that retains a tightly held AMP molecule (AMP 3). The 2 remaining sites, 1 and 3, can bind either AMP, ADP or ATP. Site 1 (AMP, ADP or ATP 1) is the high-affinity binding site and likely accommodates AMP or ADP. Site 3 (AMP, ADP or ATP 2) is the weakest nucleotide-binding site on the gamma subunit, yet it is exquisitely sensitive to changes in nucleotide levels and this allows AMPK to respond rapidly to changes in cellular energy status. Site 3 is likely to be responsible for protection of a conserved threonine in the activation loop of the alpha catalytic subunit through conformational changes induced by binding of AMP or ADP.

Belongs to the 5'-AMP-activated protein kinase gamma subunit family.

功能:

AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Gamma non-catalytic subunit mediates binding to AMP, ADP and ATP, leading to activate or inhibit AMPK: AMP-binding results in allosteric activation of alpha catalytic subunit (PRKAA1 or PRKAA2) both by inducing phosphorylation and preventing dephosphorylation of catalytic subunits. ADP also stimulates phosphorylation, without stimulating already phosphorylated catalytic subunit. ATP promotes dephosphorylation of catalytic subunit, rendering the AMPK enzyme inactive.

翻译修饰:

Phosphorylated by ULK1; leading to negatively regulate AMPK activity and suggesting the existence of a regulatory feedback loop between ULK1 and AMPK.

组织特异性:

Skeletal muscle, with weak expression in heart and pancreas.

亚基结构:

AMPK is a heterotrimer of an alpha catalytic subunit (PRKAA1 or PRKAA2), a beta (PRKAB1 or PRKAB2) and a gamma non-catalytic subunits (PRKAG1, PRKAG2 or PRKAG3). Interacts with FNIP1 and FNIP2 (By similarity).

蛋白家族:

The AMPK pseudosubstrate motif resembles the sequence around sites phosphorylated on target proteins of AMPK, except the presence of a non-phosphorylatable residue in place of Ser. In the absence of AMP this pseudosubstrate sequence may bind to the active site groove on the alpha subunit (PRKAA1 or PRKAA2), preventing phosphorylation by the upstream activating kinase STK11/LKB1.

The 4 CBS domains mediate binding to nucleotides. Of the 4 potential nucleotide-binding sites, 3 are occupied, designated as sites 1, 3, and 4 based on the CBS modules that provide the acidic residue for coordination with the 2'- and 3'-hydroxyl groups of the ribose of AMP. Of these, site 4 appears to be a structural site that retains a tightly held AMP molecule (AMP 3). The 2 remaining sites, 1 and 3, can bind either AMP, ADP or ATP. Site 1 (AMP, ADP or ATP 1) is the high-affinity binding site and likely accommodates AMP or ADP. Site 3 (AMP, ADP or ATP 2) is the weakest nucleotide-binding site on the gamma subunit, yet it is exquisitely sensitive to changes in nucleotide levels and this allows AMPK to respond rapidly to changes in cellular energy status. Site 3 is likely to be responsible for protection of a conserved threonine in the activation loop of the alpha catalytic subunit through conformational changes induced by binding of AMP or ADP.

Belongs to the 5'-AMP-activated protein kinase gamma subunit family.

研究领域

· Cellular Processes > Cellular community - eukaryotes > Tight junction.   (View pathway)

· Environmental Information Processing > Signal transduction > FoxO signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > AMPK signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Apelin signaling pathway.   (View pathway)

· Human Diseases > Endocrine and metabolic diseases > Insulin resistance.

· Human Diseases > Endocrine and metabolic diseases > Non-alcoholic fatty liver disease (NAFLD).

· Human Diseases > Cardiovascular diseases > Hypertrophic cardiomyopathy (HCM).

· Organismal Systems > Aging > Longevity regulating pathway.   (View pathway)

· Organismal Systems > Aging > Longevity regulating pathway - multiple species.   (View pathway)

· Organismal Systems > Environmental adaptation > Circadian rhythm.   (View pathway)

· Organismal Systems > Endocrine system > Insulin signaling pathway.   (View pathway)

· Organismal Systems > Endocrine system > Adipocytokine signaling pathway.

· Organismal Systems > Endocrine system > Oxytocin signaling pathway.

· Organismal Systems > Endocrine system > Glucagon signaling pathway.

限制条款

产品的规格、报价、验证数据请以官网为准,官网链接:www.affbiotech.com | www.affbiotech.cn(简体中文)| www.affbiotech.jp(日本語)

产品的数据信息为Affinity所有,未经授权不得收集Affinity官网数据或资料用于商业用途,对抄袭产品数据的行为我们将保留诉诸法律的权利。

产品相关数据会因产品批次、产品检测情况随时调整,如您已订购该产品,请以订购时随货说明书为准,否则请以官网内容为准,官网内容有改动时恕不另行通知。

Affinity保证所销售产品均经过严格质量检测。如您购买的商品在规定时间内出现问题需要售后时,请您在Affinity官方渠道提交售后申请。

产品仅供科学研究使用。不用于诊断和治疗。 

产品未经授权不得转售。

Affinity Biosciences将不会对在使用我们的产品时可能发生的专利侵权或其他侵权行为负责。Affinity Biosciences, Affinity Biosciences标志和所有其他商标所有权归Affinity Biosciences LTD.