产品: IKB alpha 抗体
货号: AF5002
描述: Rabbit polyclonal antibody to IKB alpha
应用: WB IHC IF/ICC
反应: Human, Mouse, Rat
预测: Pig, Bovine, Sheep, Rabbit, Dog, Chicken
分子量: 39kDa; 36kD(Calculated).
蛋白号: P25963
RRID: AB_2834792

浏览相似产品>>

   规格 价格 库存
 50ul RMB¥ 1250 现货
 100ul RMB¥ 2300 现货
 200ul RMB¥ 3000 现货

货期: 当天发货

联系销售

产品描述

来源:
Rabbit
应用:
WB 1:500-1:2000, IHC 1:50-1:200, IF/ICC 1:100-1:500
*The optimal dilutions should be determined by the end user.
*Tips:

WB: 适用于变性蛋白样本的免疫印迹检测. IHC: 适用于组织样本的石蜡(IHC-p)或冰冻(IHC-f)切片样本的免疫组化/荧光检测. IF/ICC: 适用于细胞样本的荧光检测. ELISA(peptide): 适用于抗原肽的ELISA检测.

反应:
Human,Mouse,Rat
预测:
Pig(100%), Bovine(100%), Sheep(100%), Rabbit(100%), Dog(100%), Chicken(92%)
克隆:
Polyclonal
特异性:
IKB alpha Antibody detects endogenous levels of total IKB alpha.
RRID:
AB_2834792
引用格式: Affinity Biosciences Cat# AF5002, RRID:AB_2834792.
偶联:
Unconjugated.
纯化:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
保存:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
别名:

展开/折叠

I kappa B alpha; I-kappa-B-alpha; IkappaBalpha; IkB-alpha; IKBA; IKBA_HUMAN; IKBalpha; MAD 3; MAD3; Major histocompatibility complex enhancer-binding protein MAD3; NF kappa B inhibitor alpha; NF-kappa-B inhibitor alpha; NFKBI; NFKBIA; Nuclear factor of kappa light chain gene enhancer in B cells; Nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor alpha;

抗原和靶标

免疫原:
Uniprot:
基因/基因ID:
描述:
NFKB1 (MIM 164011) or NFKB2 (MIM 164012) is bound to REL (MIM 164910), RELA (MIM 164014), or RELB (MIM 604758) to form the NFKB complex. The NFKB complex is inhibited by I-kappa-B proteins (NFKBIA or NFKBIB, MIM 604495), which inactivate NF-kappa-B by trapping it in the cytoplasm.
序列:
MFQAAERPQEWAMEGPRDGLKKERLLDDRHDSGLDSMKDEEYEQMVKELQEIRLEPQEVPRGSEPWKQQLTEDGDSFLHLAIIHEEKALTMEVIRQVKGDLAFLNFQNNLQQTPLHLAVITNQPEIAEALLGAGCDPELRDFRGNTPLHLACEQGCLASVGVLTQSCTTPHLHSILKATNYNGHTCLHLASIHGYLGIVELLVSLGADVNAQEPCNGRTALHLAVDLQNPDLVSLLLKCGADVNRVTYQGYSPYQLTWGRPSTRIQQQLGQLTLENLQMLPESEDEESYDTESEFTEFTEDELPYDDCVFGGQRLTL

种属预测

种属预测:

score>80的预测可信度较高,可尝试用于WB检测。*预测模型主要基于免疫原序列比对,结果仅作参考,不作为质保凭据。

Species
Results
Score
Pig
100
Bovine
100
Sheep
100
Dog
100
Rabbit
100
Chicken
92
Xenopus
69
Horse
0
Zebrafish
0
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

翻译修饰 - P25963 作为底物

Site PTM Type Enzyme
Ubiquitination
K21 Sumoylation
K21 Ubiquitination
K22 Sumoylation
K22 Ubiquitination
S32 Phosphorylation P68400 (CSNK2A1) , O14965 (AURKA) , Q99558 (MAP3K14) , Q15418 (RPS6KA1) , Q14164 (IKBKE) , O00141 (SGK1) , P19525 (EIF2AK2) , P43250 (GRK6) , Q96KB5 (PBK) , O15111 (CHUK) , O14920 (IKBKB) , P51812 (RPS6KA3) , P34947 (GRK5) , Q9Y6K9 (IKBKG) , Q15349 (RPS6KA2)
S36 Phosphorylation P68400 (CSNK2A1) , Q99558 (MAP3K14) , Q9UHD2 (TBK1) , P43250 (GRK6) , O15111 (CHUK) , Q15418 (RPS6KA1) , O14920 (IKBKB) , Q14164 (IKBKE) , O14965 (AURKA)
K38 Ubiquitination
Y42 Phosphorylation P12931 (SRC) , P06213 (INSR) , P06239 (LCK) , P43405 (SYK)
K47 Ubiquitination
K67 Ubiquitination
K87 Ubiquitination
T90 Phosphorylation
K98 Ubiquitination
S166 Phosphorylation
K238 Ubiquitination
T273 Phosphorylation
S283 Phosphorylation P68400 (CSNK2A1)
S288 Phosphorylation P68400 (CSNK2A1)
T291 Phosphorylation P68400 (CSNK2A1)
S293 Phosphorylation P68400 (CSNK2A1)
T299 Phosphorylation P68400 (CSNK2A1)
Y305 Phosphorylation P00519 (ABL1) , A0A173G4P4 (Abl fusion)

研究背景

功能:

Inhibits the activity of dimeric NF-kappa-B/REL complexes by trapping REL dimers in the cytoplasm through masking of their nuclear localization signals. On cellular stimulation by immune and proinflammatory responses, becomes phosphorylated promoting ubiquitination and degradation, enabling the dimeric RELA to translocate to the nucleus and activate transcription.

翻译修饰:

Phosphorylated; disables inhibition of NF-kappa-B DNA-binding activity. Phosphorylation at positions 32 and 36 is prerequisite to recognition by UBE2D3 leading to polyubiquitination and subsequent degradation.

Sumoylated; sumoylation requires the presence of the nuclear import signal. Sumoylation blocks ubiquitination and proteasome-mediated degradation of the protein thereby increasing the protein stability.

Monoubiquitinated at Lys-21 and/or Lys-22 by UBE2D3. Ubiquitin chain elongation is then performed by CDC34 in cooperation with the SCF(FBXW11) E3 ligase complex, building ubiquitin chains from the UBE2D3-primed NFKBIA-linked ubiquitin. The resulting polyubiquitination leads to protein degradation. Also ubiquitinated by SCF(BTRC) following stimulus-dependent phosphorylation at Ser-32 and Ser-36.

Deubiquitinated by porcine reproductive and respiratory syndrome virus Nsp2 protein, which thereby interferes with NFKBIA degradation and impairs subsequent NF-kappa-B activation.

细胞定位:

Cytoplasm. Nucleus.
Note: Shuttles between the nucleus and the cytoplasm by a nuclear localization signal (NLS) and a CRM1-dependent nuclear export.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
亚基结构:

Interacts with RELA; the interaction requires the nuclear import signal. Interacts with NKIRAS1 and NKIRAS2. Part of a 70-90 kDa complex at least consisting of CHUK, IKBKB, NFKBIA, RELA, ELP1 and MAP3K14. Interacts with isoform 1 and isoform 2 of RWDD3; the interaction enhances sumoylation. Interacts (when phosphorylated at the 2 serine residues in the destruction motif D-S-G-X(2,3,4)-S) with BTRC. Associates with the SCF(BTRC) complex, composed of SKP1, CUL1 and BTRC; the association is mediated via interaction with BTRC. Part of a SCF(BTRC)-like complex lacking CUL1, which is associated with RELA; RELA interacts directly with NFKBIA. Interacts with PRMT2. Interacts with PRKACA in platelets; this interaction is disrupted by thrombin and collagen. Interacts with HIF1AN. Interacts with MEFV. Interacts with DDRGK1; positively regulates NFKBIA phosphorylation and degradation.

(Microbial infection) Interacts with HBV protein X.

蛋白家族:

Belongs to the NF-kappa-B inhibitor family.

研究领域

· Cellular Processes > Cell growth and death > Apoptosis.   (View pathway)

· Environmental Information Processing > Signal transduction > cAMP signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > NF-kappa B signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > TNF signaling pathway.   (View pathway)

· Human Diseases > Endocrine and metabolic diseases > Insulin resistance.

· Human Diseases > Infectious diseases: Bacterial > Epithelial cell signaling in Helicobacter pylori infection.

· Human Diseases > Infectious diseases: Bacterial > Shigellosis.

· Human Diseases > Infectious diseases: Bacterial > Legionellosis.

· Human Diseases > Infectious diseases: Parasitic > Leishmaniasis.

· Human Diseases > Infectious diseases: Parasitic > Chagas disease (American trypanosomiasis).

· Human Diseases > Infectious diseases: Parasitic > Toxoplasmosis.

· Human Diseases > Infectious diseases: Viral > Hepatitis C.

· Human Diseases > Infectious diseases: Viral > Hepatitis B.

· Human Diseases > Infectious diseases: Viral > Measles.

· Human Diseases > Infectious diseases: Viral > Influenza A.

· Human Diseases > Infectious diseases: Viral > HTLV-I infection.

· Human Diseases > Infectious diseases: Viral > Herpes simplex infection.

· Human Diseases > Infectious diseases: Viral > Epstein-Barr virus infection.

· Human Diseases > Cancers: Overview > Pathways in cancer.   (View pathway)

· Human Diseases > Cancers: Overview > Viral carcinogenesis.

· Human Diseases > Cancers: Specific types > Prostate cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Chronic myeloid leukemia.   (View pathway)

· Human Diseases > Cancers: Specific types > Small cell lung cancer.   (View pathway)

· Organismal Systems > Immune system > Chemokine signaling pathway.   (View pathway)

· Organismal Systems > Development > Osteoclast differentiation.   (View pathway)

· Organismal Systems > Immune system > Toll-like receptor signaling pathway.   (View pathway)

· Organismal Systems > Immune system > NOD-like receptor signaling pathway.   (View pathway)

· Organismal Systems > Immune system > RIG-I-like receptor signaling pathway.   (View pathway)

· Organismal Systems > Immune system > Cytosolic DNA-sensing pathway.   (View pathway)

· Organismal Systems > Immune system > IL-17 signaling pathway.   (View pathway)

· Organismal Systems > Immune system > Th1 and Th2 cell differentiation.   (View pathway)

· Organismal Systems > Immune system > Th17 cell differentiation.   (View pathway)

· Organismal Systems > Immune system > T cell receptor signaling pathway.   (View pathway)

· Organismal Systems > Immune system > B cell receptor signaling pathway.   (View pathway)

· Organismal Systems > Nervous system > Neurotrophin signaling pathway.   (View pathway)

· Organismal Systems > Endocrine system > Adipocytokine signaling pathway.

· Organismal Systems > Endocrine system > Relaxin signaling pathway.

文献引用

1). Cai Z et al. Tetrahedral Framework Nucleic Acids Based Small Interfering RNA Targeting Receptor for Advanced Glycation End Products for Diabetic Complications Treatment. ACS Nano 2023 Sep 26; (PubMed: 37751401) [IF=17.1]

2). Kou L et al. Opsonized nanoparticles target and regulate macrophage polarization for osteoarthritis therapy: A trapping strategy. Journal of Controlled Release 2022 Jul;347:237-255. (PubMed: 35489544) [IF=10.8]

3). Li C et al. Oxyberberine, a novel gut microbiota-mediated metabolite of berberine, possesses superior anti-colitis effect: impact on intestinal epithelial barrier, gut microbiota profile and TLR4-MyD88-NF-κB pathway. PHARMACOLOGICAL RESEARCH 2019 Dec 18:104603 (PubMed: 31863867) [IF=9.3]

Application: WB    Species: Mice    Sample: colonic tissues

Fig. 6. Effect of OBB on the activation of TLR4-MyD88-NF-κB signaling pathway in DSS-induced colonic tissues. (A) Representative Western blotting images of TLR4, MyD88, cytoplasmic p65, nuclear p65, p-IκBα and IκBα. Changes in the relative protein expression levels of TLR4 (B), MyD88 (C), nuclear p65 (D), cytoplasmic p65 (E), and p-IκBα/IκBα ratio (F) were measured. Data are shown as the mean ± SEM (n = 3). # P < 0.05, ## P < 0.01 vs. Control group, * P < 0.05, ** P < 0.01 vs. DSS group.

4). Zhao C et al. Gut microbiota-mediated secondary bile acid alleviates Staphylococcus aureus-induced mastitis through the TGR5-cAMP-PKA-NF-κB/NLRP3 pathways in mice. npj Biofilms and Microbiomes 2023 Feb 8;9(1):8. (PubMed: 36755021) [IF=9.2]

5). Liu Y et al. Sophora japonica flowers and their main phytochemical, rutin, regulate chemically induced murine colitis in association with targeting the NF-κB signaling pathway and gut microbiota. Food Chemistry 2022 Jun 04;393:133395 (PubMed: 35691061) [IF=8.8]

6). Zhao C et al. Commensal cow Roseburia reduces gut-dysbiosis-induced mastitis through inhibiting bacterial translocation by producing butyrate in mice. Cell Reports 2022 Nov 22;41(8):111681. (PubMed: 36417859) [IF=8.8]

7). Li X et al. Semaphorin 7A interacts with nuclear factor NF-kappa-B p105 via integrin β1 and mediates inflammation. Cell Communication and Signaling 2023 Jan 30;21(1):24. (PubMed: 36717921) [IF=8.4]

Application: WB    Species: Mouse    Sample: livers

Fig. 2 The NF-κB pathway is activated in Sema7aR145W mouse liver and primary mouse hepatocytes. a–c Western blotting analysis of the relative protein levels of NF-κB p105, p- NF-κB p50/NF-κB p50, p- NF-κB p65/NF-κB p65 and p-IκB/IκB in the livers of wild-type (n = 4) and Sema7aR145W homozygous male mice (n = 5) and b, d in primary hepatocytes from wild-type (n = 3) and Sema7aR145W homozygous (n = 3) male mice. Phosphorylation levels were measured by the phosphor/total protein ratio. e Representative IF staining showing p-NF-κB p65 Ser529 (red) and DAPI (blue). Scale bars: 50 μm in liver sections from wild-type and Sema7aR145W homozygous male mice. f The relative levels of mRNA transcripts of the genes for NF-κB p105 in wild-type (n = 4) and Sema7aR145W homozygous male mice (n = 5) and g in primary hepatocytes from wild-type (n = 3) and Sema7aR145W homozygous (n = 3) male mice. The data were analysed by the independent-samples Student’s t test. * means p 

8). Meng et al. S100A14 suppresses metastasis of nasopharyngeal carcinoma by inhibition of NF-kB signaling through degradation of IRAK1. Oncogene 2020 Jun 17. (PubMed: 32555330) [IF=8.0]

Application: WB    Species: Human    Sample: NPC cells

Fig 4.b NF-KB signaling makers in S100A14 overexpressing cells and S100A14 knocked-down cells were evaluated by immunoblotting.

9). Li CL et al. Comparison of anti-inflammatory effects of berberine, and its natural oxidative and reduced derivatives from Rhizoma Coptidis in vitro and in vivo. PHYTOMEDICINE 2019 Jan;52:272-283 (PubMed: 30599908) [IF=7.9]

10). Yuan L et al. Upregulation of UGT1A1 Expression by Ursolic Acid and Oleanolic Acid via the Inhibition of the PKC/NF-κB Signaling Pathway. Phytomedicine 2021 Aug 25;92:153726. (PubMed: 34536821) [IF=7.9]

Application: WB    Species: Human    Sample: HepG2 cells and Huh7 cells

Fig 2. Effects of PMA and LPS on UGT1A1 expression and NF-κB activity in HepG2 cells and Huh7 cells. HepG2 cells and Huh7 cells, respectively, were treated with PMA (100 nM) and/or LPS (10 μg/ml) for 24 h in the presence or absence of PDTC (20 μM). DMSO (0.1%) was used as the negative control. (A) Relative mRNA and (B) protein levels of UGT1A1 were quantified by qRT-PCR and western blot analyses, respectively. The experiments were normalized to GAPDH and compared to the negative control group. (C) Protein (cytoplasmic, nuclear or total) levels of p65, phospho-p65, IκBα, and phospho-IκBα were quantified by western blot analysis. Total-p65 was normalized to GAPDH, whereas the nucleus and cytoplasmic proteins were normalized to Lamin B1 and β-actin, respectively. All values were expressed as the mean ± S.E. of three independent experiments. (* p < 0.05, ** p < 0.01, *** p < 0.001).

加载更多

限制条款

产品的规格、报价、验证数据请以官网为准,官网链接:www.affbiotech.com | www.affbiotech.cn(简体中文)| www.affbiotech.jp(日本語)

产品的数据信息为Affinity所有,未经授权不得收集Affinity官网数据或资料用于商业用途,对抄袭产品数据的行为我们将保留诉诸法律的权利。

产品相关数据会因产品批次、产品检测情况随时调整,如您已订购该产品,请以订购时随货说明书为准,否则请以官网内容为准,官网内容有改动时恕不另行通知。

Affinity保证所销售产品均经过严格质量检测。如您购买的商品在规定时间内出现问题需要售后时,请您在Affinity官方渠道提交售后申请。

产品仅供科学研究使用。不用于诊断和治疗。 

产品未经授权不得转售。

Affinity Biosciences将不会对在使用我们的产品时可能发生的专利侵权或其他侵权行为负责。Affinity Biosciences, Affinity Biosciences标志和所有其他商标所有权归Affinity Biosciences LTD.