产品: Bcl-2 抗体
货号: AF0769
描述: Rabbit polyclonal antibody to Bcl-2
应用: WB IHC IF/ICC
反应: Human
分子量: 28kDa; 26kD(Calculated).
蛋白号: P10415
RRID: AB_2834113

浏览相似产品>>

   规格 价格 库存
 50ul RMB¥ 1250 现货
 100ul RMB¥ 2300 现货
 200ul RMB¥ 3000 现货

货期: 当天发货

联系销售

产品描述

来源:
Rabbit
应用:
WB 1:500-1:2000, IHC 1:50-1:200, IF/ICC 1:100-1:500
*The optimal dilutions should be determined by the end user.
*Tips:

WB: 适用于变性蛋白样本的免疫印迹检测. IHC: 适用于组织样本的石蜡(IHC-p)或冰冻(IHC-f)切片样本的免疫组化/荧光检测. IF/ICC: 适用于细胞样本的荧光检测. ELISA(peptide): 适用于抗原肽的ELISA检测.

反应:
Human
克隆:
Polyclonal
特异性:
Bcl-2 Antibody detects endogenous levels of total Bcl-2.
RRID:
AB_2834113
引用格式: Affinity Biosciences Cat# AF0769, RRID:AB_2834113.
偶联:
Unconjugated.
纯化:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
保存:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
别名:

展开/折叠

Apoptosis regulator Bcl 2; Apoptosis regulator Bcl-2; Apoptosis regulator Bcl2; AW986256; B cell CLL/lymphoma 2; B cell leukemia/lymphoma 2; Bcl-2; Bcl2; BCL2_HUMAN; C430015F12Rik; D630044D05Rik; D830018M01Rik; Leukemia/lymphoma, B-cell, 2; Oncogene B-cell leukemia 2; PPP1R50; Protein phosphatase 1, regulatory subunit 50;

抗原和靶标

免疫原:
Uniprot:
基因/基因ID:
表达:
P10415 BCL2_HUMAN:

Expressed in a variety of tissues.

描述:
This gene encodes an integral outer mitochondrial membrane protein that blocks the apoptotic death of some cells such as lymphocytes. Constitutive expression of BCL2, such as in the case of translocation of BCL2 to Ig heavy chain locus, is thought to be the cause of follicular lymphoma. Two transcript variants, produced by alternate splicing, differ in their C-terminal ends.
序列:
MAHAGRTGYDNREIVMKYIHYKLSQRGYEWDAGDVGAAPPGAAPAPGIFSSQPGHTPHPAASRDPVARTSPLQTPAAPGAAAGPALSPVPPVVHLTLRQAGDDFSRRYRRDFAEMSSQLHLTPFTARGRFATVVEELFRDGVNWGRIVAFFEFGGVMCVESVNREMSPLVDNIALWMTEYLNRHLHTWIQDNGGWDAFVELYGPSMRPLFDFSWLSLKTLLSLALVGACITLGAYLGHK

翻译修饰 - P10415 作为底物

Site PTM Type Enzyme
Y9 Phosphorylation
K22 Ubiquitination
S24 Phosphorylation
T56 Phosphorylation Q16539 (MAPK14) , P06493 (CDK1) , P53779 (MAPK10) , P28482 (MAPK1) , P27361 (MAPK3)
T69 Phosphorylation P45983 (MAPK8)
S70 Phosphorylation P27361 (MAPK3) , P06493 (CDK1) , P53779 (MAPK10) , P17252 (PRKCA) , Q00534 (CDK6) , P28482 (MAPK1) , P45983 (MAPK8)
T74 Phosphorylation P28482 (MAPK1) , P53779 (MAPK10) , P27361 (MAPK3)
S87 Phosphorylation Q16539 (MAPK14) , P45983 (MAPK8) , Q00534 (CDK6) , P27361 (MAPK3) , P28482 (MAPK1) , P53779 (MAPK10)
C158 S-Nitrosylation
C229 S-Nitrosylation
Y235 Phosphorylation

研究背景

功能:

Suppresses apoptosis in a variety of cell systems including factor-dependent lymphohematopoietic and neural cells. Regulates cell death by controlling the mitochondrial membrane permeability. Appears to function in a feedback loop system with caspases. Inhibits caspase activity either by preventing the release of cytochrome c from the mitochondria and/or by binding to the apoptosis-activating factor (APAF-1). May attenuate inflammation by impairing NLRP1-inflammasome activation, hence CASP1 activation and IL1B release.

翻译修饰:

Phosphorylation/dephosphorylation on Ser-70 regulates anti-apoptotic activity. Growth factor-stimulated phosphorylation on Ser-70 by PKC is required for the anti-apoptosis activity and occurs during the G2/M phase of the cell cycle. In the absence of growth factors, BCL2 appears to be phosphorylated by other protein kinases such as ERKs and stress-activated kinases. Phosphorylated by MAPK8/JNK1 at Thr-69, Ser-70 and Ser-87, wich stimulates starvation-induced autophagy. Dephosphorylated by protein phosphatase 2A (PP2A) (By similarity).

Proteolytically cleaved by caspases during apoptosis. The cleaved protein, lacking the BH4 motif, has pro-apoptotic activity, causes the release of cytochrome c into the cytosol promoting further caspase activity.

Monoubiquitinated by PRKN, leading to increase its stability. Ubiquitinated by SCF(FBXO10), leading to its degradation by the proteasome.

细胞定位:

Mitochondrion outer membrane>Single-pass membrane protein. Nucleus membrane>Single-pass membrane protein. Endoplasmic reticulum membrane>Single-pass membrane protein.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
组织特异性:

Expressed in a variety of tissues.

亚基结构:

Forms homodimers, and heterodimers with BAX, BAD, BAK and Bcl-X(L). Heterodimerization with BAX requires intact BH1 and BH2 motifs, and is necessary for anti-apoptotic activity. Interacts with EI24 (By similarity). Also interacts with APAF1, BBC3, BCL2L1, BNIPL, MRPL41 and TP53BP2. Binding to FKBP8 seems to target BCL2 to the mitochondria and probably interferes with the binding of BCL2 to its targets. Interacts with BAG1 in an ATP-dependent manner. Interacts with RAF1 (the 'Ser-338' and 'Ser-339' phosphorylated form). Interacts (via the BH4 domain) with EGLN3; the interaction prevents the formation of the BAX-BCL2 complex and inhibits the anti-apoptotic activity of BCL2. Interacts with G0S2; this interaction also prevents the formation of the anti-apoptotic BAX-BCL2 complex. Interacts with RTL10/BOP. Interacts with the SCF(FBXO10) complex. Interacts (via the loop between motifs BH4 and BH3) with NLRP1 (via LRR repeats), but not with NLRP2, NLRP3, NLRP4, PYCARD, nor MEFV. Interacts with GIMAP3/IAN4, GIMAP4/IAN1 and GIMAP5/IAN5 (By similarity).

蛋白家族:

BH1 and BH2 domains are required for the interaction with BAX and for anti-apoptotic activity.

The BH4 motif is required for anti-apoptotic activity and for interaction with RAF1 and EGLN3.

The loop between motifs BH4 and BH3 is required for the interaction with NLRP1.

Belongs to the Bcl-2 family.

研究领域

· Cellular Processes > Transport and catabolism > Autophagy - animal.   (View pathway)

· Cellular Processes > Cell growth and death > Apoptosis.   (View pathway)

· Cellular Processes > Cell growth and death > Apoptosis - multiple species.   (View pathway)

· Cellular Processes > Cell growth and death > Necroptosis.   (View pathway)

· Cellular Processes > Cellular community - eukaryotes > Focal adhesion.   (View pathway)

· Environmental Information Processing > Signal transduction > NF-kappa B signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > HIF-1 signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Sphingolipid signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > PI3K-Akt signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Hedgehog signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Jak-STAT signaling pathway.   (View pathway)

· Genetic Information Processing > Folding, sorting and degradation > Protein processing in endoplasmic reticulum.   (View pathway)

· Human Diseases > Drug resistance: Antineoplastic > EGFR tyrosine kinase inhibitor resistance.

· Human Diseases > Drug resistance: Antineoplastic > Endocrine resistance.

· Human Diseases > Drug resistance: Antineoplastic > Platinum drug resistance.

· Human Diseases > Neurodegenerative diseases > Amyotrophic lateral sclerosis (ALS).

· Human Diseases > Infectious diseases: Parasitic > Toxoplasmosis.

· Human Diseases > Infectious diseases: Bacterial > Tuberculosis.

· Human Diseases > Infectious diseases: Viral > Hepatitis B.

· Human Diseases > Infectious diseases: Viral > Epstein-Barr virus infection.

· Human Diseases > Cancers: Overview > Pathways in cancer.   (View pathway)

· Human Diseases > Cancers: Overview > MicroRNAs in cancer.

· Human Diseases > Cancers: Specific types > Colorectal cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Prostate cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Small cell lung cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Gastric cancer.   (View pathway)

· Organismal Systems > Circulatory system > Adrenergic signaling in cardiomyocytes.   (View pathway)

· Organismal Systems > Immune system > NOD-like receptor signaling pathway.   (View pathway)

· Organismal Systems > Nervous system > Neurotrophin signaling pathway.   (View pathway)

· Organismal Systems > Nervous system > Cholinergic synapse.

· Organismal Systems > Endocrine system > Estrogen signaling pathway.   (View pathway)

文献引用

1). A novel long non-coding RNA LINC00355 promotes proliferation of lung adenocarcinoma cells by down-regulating miR-195 and up-regulating the expression of CCNE1. CELLULAR SIGNALLING, 2020 (PubMed: 31689506) [IF=4.8]

2). C/EBPα-mediated transcriptional activation of miR-134-5p entails KPNA3 inhibition and modulates focal hypoxic-ischemic brain damage in neonatal rats. BRAIN RESEARCH BULLETIN, 2020 (PubMed: 32814091) [IF=3.8]

Application: WB    Species: rat    Sample: PC12 cells

Fig. 3. |K, The mRNA and protein expression of apoptosis-related factors (Bax and Bcl-2) in PC12 cells was determined by RT-qPCR and Western blot analysis. Results were presented as mean ± standard deviation representative of at least three independent experiments. *p < 0.05 vs. sham or control (untreated PC12 cells) and # p < 0.05 vs. miR-134 antagomir + si-NC by one-way ANOVA with Tukey’s test and by Bonferronicorrected repeated measures ANOVA (panel E).

3). Inhibitors of PARP-1 exert inhibitory effects on the biological characteristics of hepatocellular carcinoma cells in vitro. Molecular Medicine Reports, 2017 (PubMed: 28498459) [IF=3.4]

Application: WB    Species: human    Sample: HepG2

Figure 4. Effects of different concentrations of AG014699 and BSI‑201 on protein levels of Caspase 3, Caspase 8, Bax and Bcl‑2 in HepG2 cells.(A) Blots showing proteins in cells treated with AGO14699 and (B) quantification. (C) Blots showing proteins in cells treated with (C) BSI‑201 and (D) quantification. * P<0.05, compared with the control group; ∆P<0.05, compared with the low dose group; ∆∆P<0.05, compared with the middle dose group. CTRL, control; Bcl‑2, B‑cell lymphoma 2; BAX, Bcl‑2‑associated X protein.

4). The co‑treatment of metformin with flavone synergistically induces apoptosis through inhibition of PI3K/AKT pathway in breast cancer cells. Oncology Letters, 2018 (PubMed: 29552226) [IF=2.9]

Application: WB    Species: human    Sample: MDA‑MB‑231 and MCF‑7 cells

Figure 5. |The combination of metformin and flavone regulated downstream targets of p53. (A) Protein levels of Bcl‑2, Bax were detected with western blotting when MDA‑MB‑231 and MCF‑7 cells were treated with 0, 20 mM MET, 100 µM FLA and the combination of 20 mM MET:100 µM FLA for 24 h (*P<0.05, 20 mM MET vs. control, 20 mM MET:100 µM FLA vs. 20 mM MET), caspase3 were detected no significance and cleaved caspase3 were detected when MDA‑MB‑231 (*P<0.05, 20 mM MET vs. control; **P<0.01, 20 mM MET:100 µM FLA vs. 20 mM MET) and MCF‑7 cells (*P<0.05, 20 mM MET vs. control, 20 mM MET:100 µM FLA vs. 20 mM MET) were the same treatment, (B) and their densitometry results over β‑actin in at least three separate experiments. FLA, flavone; MET, metformin.

5). EFNA4 deletion suppresses the migration, invasion, stemness, and angiogenesis of gastric cancer cells through the inactivation of Pygo2/Wnt signaling. Histology and histopathology, 2024 (PubMed: 38953488) [IF=2.0]

Application: WB    Species: Human    Sample: AGS cells

Figure 3. Deletion of EFNA4 promotes apoptosis and represses the angiogenesis of AGS cells. (A) TUNEL staining detected cell apoptosis.(B) Western blot analysis ofapoptosis-associated proteins. (C) The endothelial cell tube formation assay detectedcell angiogenesis.(D)Western blot analysis of angiogenesis-associated proteins***P

限制条款

产品的规格、报价、验证数据请以官网为准,官网链接:www.affbiotech.com | www.affbiotech.cn(简体中文)| www.affbiotech.jp(日本語)

产品的数据信息为Affinity所有,未经授权不得收集Affinity官网数据或资料用于商业用途,对抄袭产品数据的行为我们将保留诉诸法律的权利。

产品相关数据会因产品批次、产品检测情况随时调整,如您已订购该产品,请以订购时随货说明书为准,否则请以官网内容为准,官网内容有改动时恕不另行通知。

Affinity保证所销售产品均经过严格质量检测。如您购买的商品在规定时间内出现问题需要售后时,请您在Affinity官方渠道提交售后申请。

产品仅供科学研究使用。不用于诊断和治疗。 

产品未经授权不得转售。

Affinity Biosciences将不会对在使用我们的产品时可能发生的专利侵权或其他侵权行为负责。Affinity Biosciences, Affinity Biosciences标志和所有其他商标所有权归Affinity Biosciences LTD.