产品: c-Fos 抗体
货号: AF5354
描述: Rabbit polyclonal antibody to c-Fos
应用: WB IHC IF/ICC IP
文献验证: WB, IHC, IF/ICC
反应: Human, Mouse, Rat
预测: Pig, Bovine, Horse, Rabbit, Dog
蛋白号: P01100
RRID: AB_2837839

浏览相似产品>>

   规格 价格 库存
 50ul RMB¥ 1250 现货
 100ul RMB¥ 2300 现货
 200ul RMB¥ 3000 现货

货期: 当天发货

联系销售

产品描述

来源:
Rabbit
应用:
WB 1:500-1:2000, IHC 1:50-1:200, IP, IF/ICC 1:100-1:500
*The optimal dilutions should be determined by the end user. For optimal experimental results, antibody reuse is not recommended.
*Tips:

WB: 适用于变性蛋白样本的免疫印迹检测. IHC: 适用于组织样本的石蜡(IHC-p)或冰冻(IHC-f)切片样本的免疫组化/荧光检测. IF/ICC: 适用于细胞样本的荧光检测. ELISA(peptide): 适用于抗原肽的ELISA检测.

反应:
Human, Mouse, Rat
克隆:
Polyclonal
特异性:
c-Fos Antibody detects endogenous levels of total c-Fos.
RRID:
AB_2837839
引用格式: Affinity Biosciences Cat# AF5354, RRID:AB_2837839.
偶联:
Unconjugated.
纯化:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
保存:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
别名:

展开/折叠

Activator protein 1; AP 1; C FOS; Cellular oncogene c fos; Cellular oncogene fos; FBJ murine osteosarcoma viral (v fos) oncogene homolog (oncogene FOS); FBJ murine osteosarcoma viral oncogene homolog; FBJ murine osteosarcoma viral v fos oncogene homolog; FBJ Osteosarcoma Virus; FOS; FOS protein; FOS_HUMAN; G0 G1 switch regulatory protein 7; G0/G1 switch regulatory protein 7; G0S7; Oncogene FOS; p55; proto oncogene c Fos; Proto oncogene protein c fos; Proto-oncogene c-Fos; v fos FBJ murine osteosarcoma viral oncogene homolog;

抗原和靶标

免疫原:

A synthesized peptide derived from human c-Fos, corresponding to a region within N-terminal amino acids.

基因/基因ID:
描述:
Nuclear phosphoprotein which forms a tight but non-covalently linked complex with the JUN/AP-1 transcription factor. In the heterodimer, FOS and JUN/AP-1 basic regions each seems to interact with symmetrical DNA half sites.

研究领域

· Cellular Processes > Cell growth and death > Apoptosis.   (View pathway)

· Environmental Information Processing > Signal transduction > MAPK signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > cAMP signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > TNF signaling pathway.   (View pathway)

· Human Diseases > Drug resistance: Antineoplastic > Endocrine resistance.

· Human Diseases > Substance dependence > Amphetamine addiction.

· Human Diseases > Infectious diseases: Bacterial > Salmonella infection.

· Human Diseases > Infectious diseases: Bacterial > Pertussis.

· Human Diseases > Infectious diseases: Parasitic > Leishmaniasis.

· Human Diseases > Infectious diseases: Parasitic > Chagas disease (American trypanosomiasis).

· Human Diseases > Infectious diseases: Viral > Hepatitis B.

· Human Diseases > Infectious diseases: Viral > HTLV-I infection.

· Human Diseases > Infectious diseases: Viral > Herpes simplex infection.

· Human Diseases > Cancers: Overview > Pathways in cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Colorectal cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Breast cancer.   (View pathway)

· Human Diseases > Cancers: Overview > Choline metabolism in cancer.   (View pathway)

· Human Diseases > Immune diseases > Rheumatoid arthritis.

· Organismal Systems > Development > Osteoclast differentiation.   (View pathway)

· Organismal Systems > Immune system > Toll-like receptor signaling pathway.   (View pathway)

· Organismal Systems > Immune system > IL-17 signaling pathway.   (View pathway)

· Organismal Systems > Immune system > Th1 and Th2 cell differentiation.   (View pathway)

· Organismal Systems > Immune system > Th17 cell differentiation.   (View pathway)

· Organismal Systems > Immune system > T cell receptor signaling pathway.   (View pathway)

· Organismal Systems > Immune system > B cell receptor signaling pathway.   (View pathway)

· Organismal Systems > Environmental adaptation > Circadian entrainment.

· Organismal Systems > Nervous system > Cholinergic synapse.

· Organismal Systems > Nervous system > Dopaminergic synapse.

· Organismal Systems > Endocrine system > Estrogen signaling pathway.   (View pathway)

· Organismal Systems > Endocrine system > Prolactin signaling pathway.   (View pathway)

· Organismal Systems > Endocrine system > Oxytocin signaling pathway.

· Organismal Systems > Endocrine system > Relaxin signaling pathway.

文献引用

1). Prolonged anesthesia induces neuroinflammation and complement-mediated microglial synaptic elimination involved in neurocognitive dysfunction and anxiety-like behaviors. BMC Medicine, 2023 (PubMed: 36600274) [IF=7.0]

Application: IF/ICC    Species: Rat    Sample: hippocampal

Fig. 2 Prolonged anesthesia inducing neuroinflammation, upregulating NF-κB inflammatory pathway, downregulating neuronal excitability, and inactivating apoptotic signaling. A, B TNF-α, IL-1β, and IL-6 evidently increased in the cortex (A) and hippocampus (B) after prolonged anesthesia (n = 4 or 5 per group). C Effects of prolonged anesthesia on the morphological changes of neurons in the hippocampus. Scale bar = 20 μm. D Prolonged anesthesia activated NF-κB inflammatory pathway (n = 3 per group). E The number of Phospho-NF-κB P65-colocalized nuclei in the hippocampus (n = 4 per group). Scale bar = 10 μm. F Prolonged anesthesia inhibiting neuronal excitability marker C-fos expression in the hippocampal CA1 region (n = 4 per group). Scale bar = 20 μm. G Exhibiting representative EEG raw traces (upper) and power spectrograms (bottom) for the hippocampus. H Prolonged anesthesia triggered burst suppression in the hippocampus (n = 6 per group). The burst suppression ratio (BSR) was calculated as the percentage of suppression time of each 1 min binary series. I TUNEL staining in brain slices was negative after prolonged anesthesia. Scale bar = 100 μm. J The number of Nissl’s body (n = 4 per group). Scale bar = 20 μm. K Prolonged anesthesia had no effect on apoptotic pathways (n = 3 per group). L, M Quantification of Cleaved caspase-3/caspase-3 (L) and bcl-2/bax (M) levels normalized to β-actin. Data was shown as Mean ± SD, with *P < 0.05 or *P < 0.001; Sevo group vs. control group. Arrows represent positive cells or colocalization

2). Effects and Mechanisms of Rhus chinensis Mill. Fruits on Suppressing RANKL-Induced Osteoclastogenesis by Network Pharmacology and Validation in RAW264.7 Cells. Nutrients, 2022 (PubMed: 35267996) [IF=5.9]

Application: WB    Species:    Sample: RAW264.7 cells

Figure 9.| Effects of the ethanolic extract from the R. chinensis fruits on RANKL-induced osteoclastogenesis on c-Fos and NFATc1 proteins in RAW264.7 cells. (a) Western blot analysis of c-Fos and proteins

3). Dehydromiltirone inhibits osteoclast differentiation in RAW264.7 and bone marrow macrophages by modulating MAPK and NF-κB activity. Frontiers in Pharmacology, 2022 (PubMed: 36210855) [IF=5.6]

4). Protective Effects of ζ-Carotene-like Compounds against Acute UVB-Induced Skin Damage. International journal of molecular sciences, 2023 (PubMed: 37762273) [IF=5.6]

Application: WB    Species: Mouse    Sample:

Figure 7 MAPK/AP-1 signaling pathway. (A) is the representative blots. (B–K) are the ratios of JNK, ERK, P38, Jun, c-FOS, p-JNK, p-ERK, p-P38, p-Jun and p-c-FOS to GAPDH (n = 3, ## p < 0.01 vs. the NCS group and * p < 0.05, ** p < 0.01 vs. the MCS group and ns is no significance).

5). JNK signaling pathway mediates acetaminophen-induced hepatotoxicity accompanied by changes of glutathione S-transferase A1 content and expression. Frontiers in Pharmacology, 2019 (PubMed: 31620005) [IF=5.6]

Application: WB    Species: mouse    Sample: liver

FIGURE 2 | Activation of JNK signaling pathway under different dosages of APAP. (A) Western blot analyses of total tissue lysate for p-JNK, JNK, p-c-Jun, c-Jun,p-c-Fos, c-Fos, and β-actin (loading control).

6). Isoginkgetin Inhibits RANKL-induced Osteoclastogenesis and Alleviates Bone Loss. Biochemical pharmacology, 2025 (PubMed: 39613114) [IF=5.3]

7). Neurobehavioral alternations of the female offspring born to polycystic ovary syndrome model rats administered by Chinese herbal medicine. Chinese Medicine, 2021 (PubMed: 34600579) [IF=5.3]

8). 17β-Trenbolone increases the release of lipocalin 2 via the brain‒liver axis and causes Alzheimer's disease-like symptoms in CSDS-induced mice. MOLECULAR NEUROBIOLOGY, 2025 [IF=5.1]

9). CDC42 Regulates the ERK Pathway to Improve Oxygen‒Glucose Deprivation/Reoxygenation-Induced Neural Oxidative Stress and Apoptosis. Molecular neurobiology, 2025 (PubMed: 40035949) [IF=4.6]

10). Phosphorylation at Ser 727 Increases STAT3 Interaction with PKCε Regulating Neuron–Glia Crosstalk via IL-6-Mediated Hyperalgesia In Vivo and In Vitro. MEDIATORS OF INFLAMMATION, 2022 (PubMed: 35125963) [IF=4.4]

Application: WB    Species: Rat    Sample: spinal cords

Figure 5 Expression of proteins related to activated neurocytes detected by Western blot analysis. (a–i) Protein expression of pSTAT3 (Ser727), IL-6, c-Fos, GFAP, and Iba-1 in the spinal cords of FCA-treated rats significant decreased (P < 0.05) after intrathecal injections of PKCε inhibitor peptide (100 μg/50 μL), APTSTAT3-9R (20 μg/50 μL), and anti-IL-6 antibody (100 ng/50 μL). Values were normalized against GAPDH and are expressed as ratios (%) of control values. Data are shown as means ± SD (n = 4–5). ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001; one-way ANOVA followed by Bonferroni tests.

加载更多

限制条款

产品的规格、报价、验证数据请以官网为准,官网链接:www.affbiotech.com | www.affbiotech.cn(简体中文)| www.affbiotech.jp(日本語)

产品的数据信息为Affinity所有,未经授权不得收集Affinity官网数据或资料用于商业用途,对抄袭产品数据的行为我们将保留诉诸法律的权利。

产品相关数据会因产品批次、产品检测情况随时调整,如您已订购该产品,请以订购时随货说明书为准,否则请以官网内容为准,官网内容有改动时恕不另行通知。

Affinity保证所销售产品均经过严格质量检测。如您购买的商品在规定时间内出现问题需要售后时,请您在Affinity官方渠道提交售后申请。

产品仅供科学研究使用。不用于诊断和治疗。 

产品未经授权不得转售。

Affinity Biosciences将不会对在使用我们的产品时可能发生的专利侵权或其他侵权行为负责。Affinity Biosciences, Affinity Biosciences标志和所有其他商标所有权归Affinity Biosciences LTD.