产品: 磷酸化 p53 (Ser15) 抗体
货号: AF3075
描述: Rabbit polyclonal antibody to Phospho-p53 (Ser15)
应用: WB IHC IF/ICC IP
文献验证: WB, IHC, IF/ICC
反应: Human, Mouse, Rat
预测: Pig, Bovine, Sheep, Rabbit
蛋白号: P04637
RRID: AB_2834512

浏览相似产品>>

   规格 价格 库存
 50ul RMB¥ 1300 现货
 100ul RMB¥ 2400 现货
 200ul RMB¥ 3200 现货

货期: 当天发货

联系销售

产品描述

来源:
Rabbit
应用:
WB 1:500-1:2000, IHC 1:50-1:1000, IP 1:100-1:500, IF/ICC 1:100-1:500
*The optimal dilutions should be determined by the end user.
*Tips:

WB: 适用于变性蛋白样本的免疫印迹检测. IHC: 适用于组织样本的石蜡(IHC-p)或冰冻(IHC-f)切片样本的免疫组化/荧光检测. IF/ICC: 适用于细胞样本的荧光检测. ELISA(peptide): 适用于抗原肽的ELISA检测.

反应:
Human, Mouse, Rat
克隆:
Polyclonal
特异性:
Phospho-p53 (Ser15) Antibody detects endogenous levels of p53 only when phosphorylated at Serine 15.
RRID:
AB_2834512
引用格式: Affinity Biosciences Cat# AF3075, RRID:AB_2834512.
偶联:
Unconjugated.
纯化:
The antibody is from purified rabbit serum by affinity purification via sequential chromatography on phospho-peptide and non-phospho-peptide affinity columns.
保存:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
别名:

展开/折叠

Antigen NY-CO-13; BCC7; Cellular tumor antigen p53; FLJ92943; LFS1; Mutant tumor protein 53; p53; p53 tumor suppressor; P53_HUMAN; Phosphoprotein p53; Tp53; Transformation related protein 53; TRP53; Tumor protein 53; Tumor protein p53; Tumor suppressor p53;

抗原和靶标

免疫原:

A synthesized peptide derived from human p53 around the phosphorylation site of Ser15.

基因/基因ID:
描述:
Tumor protein p53, a nuclear protein, plays an essential role in the regulation of cell cycle, specifically in the transition from G0 to G1. It is found in very low levels in normal cells, however, in a variety of transformed cell lines, it is expressed in high amounts, and believed to contribute to transformation and malignancy.

研究领域

· Cellular Processes > Cell growth and death > Cell cycle.   (View pathway)

· Cellular Processes > Cell growth and death > p53 signaling pathway.   (View pathway)

· Cellular Processes > Cell growth and death > Apoptosis.   (View pathway)

· Cellular Processes > Cell growth and death > Ferroptosis.   (View pathway)

· Cellular Processes > Cell growth and death > Cellular senescence.   (View pathway)

· Environmental Information Processing > Signal transduction > MAPK signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Sphingolipid signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > PI3K-Akt signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Wnt signaling pathway.   (View pathway)

· Human Diseases > Drug resistance: Antineoplastic > Endocrine resistance.

· Human Diseases > Drug resistance: Antineoplastic > Platinum drug resistance.

· Human Diseases > Neurodegenerative diseases > Amyotrophic lateral sclerosis (ALS).

· Human Diseases > Neurodegenerative diseases > Huntington's disease.

· Human Diseases > Infectious diseases: Viral > Hepatitis C.

· Human Diseases > Infectious diseases: Viral > Hepatitis B.

· Human Diseases > Infectious diseases: Viral > Measles.

· Human Diseases > Infectious diseases: Viral > Human papillomavirus infection.

· Human Diseases > Infectious diseases: Viral > HTLV-I infection.

· Human Diseases > Infectious diseases: Viral > Herpes simplex infection.

· Human Diseases > Infectious diseases: Viral > Epstein-Barr virus infection.

· Human Diseases > Cancers: Overview > Pathways in cancer.   (View pathway)

· Human Diseases > Cancers: Overview > Transcriptional misregulation in cancer.

· Human Diseases > Cancers: Overview > Viral carcinogenesis.

· Human Diseases > Cancers: Overview > Proteoglycans in cancer.

· Human Diseases > Cancers: Overview > MicroRNAs in cancer.

· Human Diseases > Cancers: Specific types > Colorectal cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Pancreatic cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Endometrial cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Glioma.   (View pathway)

· Human Diseases > Cancers: Specific types > Prostate cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Thyroid cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Basal cell carcinoma.   (View pathway)

· Human Diseases > Cancers: Specific types > Melanoma.   (View pathway)

· Human Diseases > Cancers: Specific types > Bladder cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Chronic myeloid leukemia.   (View pathway)

· Human Diseases > Cancers: Specific types > Small cell lung cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Non-small cell lung cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Breast cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Hepatocellular carcinoma.   (View pathway)

· Human Diseases > Cancers: Specific types > Gastric cancer.   (View pathway)

· Human Diseases > Cancers: Overview > Central carbon metabolism in cancer.   (View pathway)

· Organismal Systems > Aging > Longevity regulating pathway.   (View pathway)

· Organismal Systems > Nervous system > Neurotrophin signaling pathway.   (View pathway)

· Organismal Systems > Endocrine system > Thyroid hormone signaling pathway.   (View pathway)

文献引用

1). SOX9 Modulates the Transformation of Gastric Stem Cells Through Biased Symmetric Cell Division. Gastroenterology, 2023 (PubMed: 36740200) [IF=25.7]

2). P21 and P27 promote tumorigenesis and progression via cell cycle acceleration in seminal vesicles of TRAMP mice. International Journal of Biological Sciences, 2019 (PubMed: 31592235) [IF=8.2]

3). Sulfur dioxide and benzo(a)pyrene trigger apoptotic and anti-apoptotic signals at different post-exposure times in mouse liver. Chemosphere, 2015 (PubMed: 26162325) [IF=8.1]

Application: WB    Species: mouse    Sample: mouse liver

Fig. 4. Effects of SO2 and/or BaP on protein expression in mouse livers. (A), Representative bands of mouse liver proteins after chlorpyrifos exposure. Proteins (50 lg) obtained from mouse liver after post-exposure to SO2 and/or BaP for 1 d or 13 weeks were used to blot. GAPDH was used as a loading control. (B–H), The protein level of cleaved casepase-3 (B), cleaved caspase-9 (C), bcl-2 (D), bax (E), bcl-2/bax ratio (F), p53 (G), and p53 phosphorylation on Ser15 (H) were measured by densitometric analysis and normalized to the loading control (n = 1). Each column and bar represents the mean ± SE of at least six individual sample; ⁄ P < 0.05, ⁄⁄P < 0.01, ⁄⁄⁄P < 0.001 versus control group; #P < 0.05, ##P < 0.01, ###P < 0.001 versus SO2 alone; a P < 0.05, b P < 0.01, c P < 0.001 versus BaP alone.

4). AHR/cyp1b1 signaling-mediated extrinsic apoptosis contributes to 6PPDQ-induced cardiac dysfunction in zebrafish embryos. Environmental Pollution, 2024 (PubMed: 38311157) [IF=7.6]

Application: IHC    Species: zebrafish    Sample: zebrafish embryos

Fig. 4. AHR mediates 6PPDQ-induced extrinsic apoptosis in the hearts of zebrafish embryos at 72 hpf. B, E) Immunostaining and quantification results for cleaved caspase-8/3 (c caspa-8/3) and phosphorylated p53 (p-p53).

5). TRIP13 interference inhibits the proliferation and metastasis of thyroid cancer cells through regulating TTC5/p53 pathway and epithelial-mesenchymal transition related genes expression. BIOMEDICINE & PHARMACOTHERAPY, 2019 (PubMed: 31648166) [IF=6.9]

6). The activated ATM/p53 pathway promotes autophagy in response to oxidative stress-mediated DNA damage induced by Microcystin-LR in male germ cells. Ecotoxicology and Environmental Safety, 2021 (PubMed: 34715501) [IF=6.2]

Application: WB    Species: Mouse    Sample: GC-1 cells

Fig. 4. Changes of ATM and its downstream proteins in GC-1 cells and mouse testis. Expression and analysis of the related proteins in mouse testis (A) and in GC-1 cells (B). *p < 0.05 vs. the control group; #p < 0.05 vs. the corresponding MC-LR exposure group. All data were expressed as  ± SD (n = 3).

7). Patulin induces ROS-dependent cardiac cell toxicity by inducing DNA damage and activating endoplasmic reticulum stress apoptotic pathway. Ecotoxicology and environmental safety, 2024 (PubMed: 38061079) [IF=6.2]

Application: WB    Species: Human    Sample: AC16 cells

Fig. 3. Cells were treated with PAT and/or NAC (2 mmol/L) for 24 h. (A) Western blotting images of the proteins related to cell cycle changes. (B) Western blotting analysis for CDK1, Cyclin B1, p-p53, p21 (n = 3, mean ± SD. “ns” represents non-significant differences, **p 

8). Single-cell transcriptomics reveals ependymal subtypes related to cytoskeleton dynamics as the core driver of syringomyelia pathological development. iScience, 2023 (PubMed: 37275526) [IF=5.8]

Application: IF/ICC    Species: Human    Sample: EPCs

Figure 5 Dynamic changes in spinal cord ependymal populations post-op for syringomyelia (A–D) We performed further subtype analysis of the EPCs, the UMAP of which revealed two main distinct subtypes. Subtypes were annotated using a combination of canonical markers, transcription factor expression, and GO enrichment analyses of the DEGs (A). Cell cycle assignment showed that cells in Cluster 5 were mainly in the S phase (B). In general, ependymal cells showed high expression of the EPC-specific marker Foxj1 in the dot plot and violin plot (C). Cells are colored by the expression value of canonical marker genes, the motor ciliary ependymal subpopulations (with featured genes of Cfap43 and Sncg), and the glial ependymal subpopulations (with a higher expression of GFAP and Rnd3). Values are log-transformed normalized expression counts (D). (E, F, and H) The differentiation and development trajectory of EPCs was constructed by the diffusion map of pseudotime analysis. Pseudotime trajectory analysis corresponding to the differentiation of EPCs from Cluster 0 to other clusters. Cluster 5 (proliferating) between Cluster 0 in the early state and the other clusters. Cells are colored by cell types, pseudotime, and cell states, as indicated, from the left to the right panels (E). A ridge plot was drawn based on the pseudotime analysis to simulate the trajectory of cell clusters in cell differentiation and the proportions of ependymal-lineage subtypes at each time point from the top to the bottom (F). GO biological process terms associated with the top DEGs among two different cell subtypes (H). (G) Immunofluorescence shows the expression pattern of Sox2, Foxj1, and Nestin during syringomyelia development. EPCs (Foxj1+) in the CC area represented the EPCs with colocalization of Sox2 and Nestin. During the syringomyelia formation with the CC expansion, the syringomyelia was in a moniliform shape, and there were obvious separations between adjacent dilated compartments. The EPCs are irregularly distributed throughout the central canal due to moniliform-like dilatation. The stacked cells remained as EPCs (Foxj1+) in the stenosis, resembling a tunneling effect and showing that the CC was still communicating, but the monolayer of cells was organized in the significant dilatated area and even disrupted in some regions. The cytoskeleton outlined by Netin also became gradually disorganized or even disordered at post-op 6 weeks.

9). Storax Attenuates Cardiac Fibrosis following Acute Myocardial Infarction in Rats via Suppression of AT1R–Ankrd1–P53 Signaling Pathway. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022 (PubMed: 36361958) [IF=5.6]

Application: WB    Species: Rat    Sample: cardiac tissue

Figure 8 Storax inhibits the AT1R–Ankrd1–P53 pathway in AMI rats against cardiomyocyte apoptosis. (A) WB bands showing the protein expression levels of AT1R, Ankrd1, P-p53 (ser15), P53 and Mdm2 in cardiac tissue. (B–E) Relative protein for AT1R, Ankrd1, P-p53 (ser15) and Mdm2 were quantified by densitometry based on immunoblot images. Results are presented as mean ± SD (n = 3). One-way ANOVA follow by Bonferroni’s post hoc test: # p < 0.05, ## p < 0.01 vs. vehicle group.

10). Hua-Tan-Sheng-Jing Decoction Treats Obesity With Oligoasthenozoospermia by Up-Regulating the PI3K-AKT and Down-Regulating the JNK MAPK Signaling Pathways: At the Crossroad of Obesity and Oligoasthenozoospermia. Frontiers in Pharmacology, 2022 (PubMed: 35559247) [IF=5.6]

加载更多

限制条款

产品的规格、报价、验证数据请以官网为准,官网链接:www.affbiotech.com | www.affbiotech.cn(简体中文)| www.affbiotech.jp(日本語)

产品的数据信息为Affinity所有,未经授权不得收集Affinity官网数据或资料用于商业用途,对抄袭产品数据的行为我们将保留诉诸法律的权利。

产品相关数据会因产品批次、产品检测情况随时调整,如您已订购该产品,请以订购时随货说明书为准,否则请以官网内容为准,官网内容有改动时恕不另行通知。

Affinity保证所销售产品均经过严格质量检测。如您购买的商品在规定时间内出现问题需要售后时,请您在Affinity官方渠道提交售后申请。

产品仅供科学研究使用。不用于诊断和治疗。 

产品未经授权不得转售。

Affinity Biosciences将不会对在使用我们的产品时可能发生的专利侵权或其他侵权行为负责。Affinity Biosciences, Affinity Biosciences标志和所有其他商标所有权归Affinity Biosciences LTD.