产品: c-Myc 抗体
货号: AF0358
描述: Rabbit polyclonal antibody to c-Myc
应用: WB IHC IF/ICC
文献验证: WB, IHC, IF/ICC
反应: Human, Mouse, Rat
预测: Pig, Bovine, Horse, Sheep, Rabbit, Dog, Chicken, Xenopus
蛋白号: P01106
RRID: AB_2833523

浏览相似产品>>

   规格 价格 库存
 50ul RMB¥ 1250 现货
 100ul RMB¥ 2300 现货
 200ul RMB¥ 3000 现货

货期: 当天发货

联系销售

产品描述

来源:
Rabbit
应用:
WB 1:500-1:3000, IHC 1:50-1:200, IF/ICC 1:100-1:500
*The optimal dilutions should be determined by the end user.
*Tips:

WB: 适用于变性蛋白样本的免疫印迹检测. IHC: 适用于组织样本的石蜡(IHC-p)或冰冻(IHC-f)切片样本的免疫组化/荧光检测. IF/ICC: 适用于细胞样本的荧光检测. ELISA(peptide): 适用于抗原肽的ELISA检测.

反应:
Human, Mouse, Rat
克隆:
Polyclonal
特异性:
c-Myc Antibody detects endogenous levels of total c-Myc.
RRID:
AB_2833523
引用格式: Affinity Biosciences Cat# AF0358, RRID:AB_2833523.
偶联:
Unconjugated.
纯化:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
保存:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
别名:

展开/折叠

AU016757; Avian myelocytomatosis viral oncogene homolog; bHLHe39; c Myc; Class E basic helix-loop-helix protein 39; MRTL; Myc; Myc protein; Myc proto oncogene protein; Myc proto-oncogene protein; myc-related translation/localization regulatory factor; MYC_HUMAN; Myc2; MYCC; Myelocytomatosis oncogene; Niard; Nird; Oncogene Myc; OTTHUMP00000158589; Proto-oncogene c-Myc; Protooncogene homologous to myelocytomatosis virus; RNCMYC; Transcription factor p64; Transcriptional regulator Myc-A; V-Myc avian myelocytomatosis viral oncogene homolog; v-myc myelocytomatosis viral oncogene homolog (avian);

抗原和靶标

免疫原:

A synthesized peptide derived from human c-Myc, corresponding to a region within N-terminal amino acids.

基因/基因ID:
描述:
Myc a proto-oncogenic transcription factor that plays a role in cell proliferation, apoptosis and in the development of human tumors.. Seems to activate the transcription of growth-related genes.

研究领域

· Cellular Processes > Cell growth and death > Cell cycle.   (View pathway)

· Cellular Processes > Cell growth and death > Cellular senescence.   (View pathway)

· Cellular Processes > Cellular community - eukaryotes > Signaling pathways regulating pluripotency of stem cells.   (View pathway)

· Environmental Information Processing > Signal transduction > MAPK signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > ErbB signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > PI3K-Akt signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Wnt signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > TGF-beta signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Hippo signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Jak-STAT signaling pathway.   (View pathway)

· Human Diseases > Infectious diseases: Viral > Hepatitis B.

· Human Diseases > Infectious diseases: Viral > HTLV-I infection.

· Human Diseases > Infectious diseases: Viral > Epstein-Barr virus infection.

· Human Diseases > Cancers: Overview > Pathways in cancer.   (View pathway)

· Human Diseases > Cancers: Overview > Transcriptional misregulation in cancer.

· Human Diseases > Cancers: Overview > Proteoglycans in cancer.

· Human Diseases > Cancers: Overview > MicroRNAs in cancer.

· Human Diseases > Cancers: Specific types > Colorectal cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Endometrial cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Thyroid cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Bladder cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Chronic myeloid leukemia.   (View pathway)

· Human Diseases > Cancers: Specific types > Acute myeloid leukemia.   (View pathway)

· Human Diseases > Cancers: Specific types > Small cell lung cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Breast cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Hepatocellular carcinoma.   (View pathway)

· Human Diseases > Cancers: Specific types > Gastric cancer.   (View pathway)

· Human Diseases > Cancers: Overview > Central carbon metabolism in cancer.   (View pathway)

· Organismal Systems > Endocrine system > Thyroid hormone signaling pathway.   (View pathway)

文献引用

1). Upregulation of BCL-2 by acridone derivative through gene promoter i-motif for alleviating liver damage of NAFLD/NASH. NUCLEIC ACIDS RESEARCH, 2020 (PubMed: 32710621) [IF=16.6]

Application: WB    Species: human    Sample: HepG2

Figure 3. Effect of A22 on gene transcription and translation in HepG2 cells. The mRNA levels of BCL-2 and BAX (A), as well as C-KIT, KRAS, C-MYC and VEGF (B) in HepG2 cells were analyzed by using qRT-PCR after incubation with increasing concentration of A22 for 12 h. (C) Effects of A22 on protein expressions of C-MYC, VEGF, C-KIT and BCL-2 in the presence or absence of increasing concentration of A22 for 24 h, which were quantitatively analyzed (D).

2). Gut dysbiosis promotes prostate cancer progression and docetaxel resistance via activating NF-κB-IL6-STAT3 axis. Microbiome, 2022 (PubMed: 35710492) [IF=13.8]

Application: WB    Species: Mouse    Sample: tumor tissue

Fig. 4 The IL6-STAT3 pathway promoted prostate cancer proliferation. A Western blot of relative proteins in RM-1 and DU-145 cultured with CM or CM with Stattic for 24 h. B, C Edu (scale bar, 100 μm) and clone formation assay were conducted on RM-1 and DU-145 under condition as described. D Flowchart of the NC, Abx, and Abx+Stattic groups for in vivo study. Relevant tumor images and comparison of volume and weight for tumors in three groups (n = 5). E Immunohistochemistry of tumor tissues for p-STAT3-, c-myc-, and cyclin D1-positive cell in three groups (scale bar, 50 μm). Statistical significance was assessed by LSD in one-way ANOVA. *p < 0.05, **p < 0.01, and ***p < 0.001: compared to the NC group; #p < 0.05, ##p < 0.01, and ###p < 0.001: compared to the CM or Abx group

Application: IHC    Species: Mouse    Sample: tumor tissue

Fig. 4 The IL6-STAT3 pathway promoted prostate cancer proliferation. A Western blot of relative proteins in RM-1 and DU-145 cultured with CM or CM with Stattic for 24 h. B, C Edu (scale bar, 100 μm) and clone formation assay were conducted on RM-1 and DU-145 under condition as described. D Flowchart of the NC, Abx, and Abx+Stattic groups for in vivo study. Relevant tumor images and comparison of volume and weight for tumors in three groups (n = 5). E Immunohistochemistry of tumor tissues for p-STAT3-, c-myc-, and cyclin D1-positive cell in three groups (scale bar, 50 μm). Statistical significance was assessed by LSD in one-way ANOVA. *p < 0.05, **p < 0.01, and ***p < 0.001: compared to the NC group; #p < 0.05, ##p < 0.01, and ###p < 0.001: compared to the CM or Abx group

3). Oxidative stress-induced endothelial cells-derived exosomes accelerate skin flap survival through Lnc NEAT1-mediated promotion of endothelial progenitor cell function. Stem cell research & therapy, 2022 (PubMed: 35850692) [IF=7.5]

Application: WB    Species: human    Sample:

Fig. 5 The differential expression of Lnc RNAs in exosomes and proteins in the Wnt/β-catenin pathway. A The volcano plot represented the differential expression of lncRNAs. The blue dots represent the downregulated genes, while the red dots represent upregulated genes. B Heat map of differential expression of Lnc RNAs in H2O2-HUVEC-Exos and HUVEC-Exos. Red corresponds to upregulated LncRNAs, and green corresponds to downregulated LncRNAs. C Quantification of Lnc NEAT1 level in EPCs after cultured with PBS, HUVEC-Exos, or H2O2-HUVEC-Exos. D The β-catenin, c-myc and cyclin D1 protein levels in EPCs in control, HUVEC-Exos or H2O2-HUVEC-Exos group. * P 

4). RECQL4 regulates DNA damage response and redox homeostasis in esophageal cancer. Cancer Biology & Medicine, 2021 (PubMed: 33628589) [IF=5.6]

Application: WB    Species: Human    Sample: KYSE30 and TE-1 cells

Figure 4 The loss of RECQL4 induces cell cycle arrest and cellular senescence. (A) Depletion of RECQL4 by siRNA. RECQL4 protein levels were measured by Western blot. KYSE30 and TE-1 cells were transfected with siRNA duplexes (200 nM) specific to RECQL4 or negative oligo in serum-free medium for 4 h, then replaced with complete medium for 24 h. Whole cell extracts were collected for Western blot analysis using RECQL4 antibodies. (B) Cell cycle distributions in RECQL4 knockdown cell lines (KYSE30 and TE-1 cells) and controls were determined by flow cytometry. (C) Cellular senescence was examined by SA-β-gal staining. Microscopic magnification (×200), Scale bar: 50 μm. (D) The protein levels of c-myc, p21, cyclin D, CDK6, cyclin E, Bax, and Bcl-2 were determined by Western blot in stable Tet-on inducible RECQL4 knockdown cell lines (KYSE30 and TE-1 cells) (+Dox) and controls (–Dox). Experiments were independently repeated 3 times. All data indicate the mean ± SD. *P < 0.05; **P < 0.01; ***P < 0.001.

5). Silencing c-Myc Enhances the Antitumor Activity of Bufalin by Suppressing the HIF-1α/SDF-1/CXCR4 Pathway in Pancreatic Cancer Cells. Frontiers in Pharmacology, 2020 (PubMed: 32362830) [IF=5.6]

Application: WB    Species: Human    Sample: pancreatic cancer cells

Figure 1 Construction of the cell lines with different c-Myc expression. The expression of c-Myc in human pancreatic cancer cells (Colo357, HS766T, PANC-1, BxPC3, SW1990, PIC-35) was detected via (A) Quantitative real-time polymerase chain reaction (qRT-PCR) and (B) western blot (n = 3). The expression of c-Myc in PANC-1 cells transfected with si-c-Myc or siRNA negative control was detected via (C) qRT-PCR and (D) western blot (** p < 0.01 vs control, n = 3). The expression of c-Myc in SW1990 cells transfected with pcDNA-c-Myc or empty vector pcDNA was detected via (E) qRT-PCR and (F) western blot (** p < 0.01 vs control, n = 3).

6). Disordered farnesoid X receptor signaling is associated with liver carcinogenesis in Abcb11-deficient mice. The Journal of pathology, 2021 (PubMed: 34410012) [IF=5.6]

7). Fractalkine Aggravates LPS-induced Macrophage Activation and Acute Kidney Injury via Wnt/β-catenin Signaling Pathway. JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2021 (PubMed: 34101346) [IF=5.3]

Application: WB    Species: mouse    Sample: J774A. 1 cells

FIGURE 2|FKN promoted the viability of J774A.1 cells via Wnt/β-catenin signalling.D, E,Western blotting analysis and their respective quantitation showing the protein expression of FKN, β-catenin,Wnt-4, c-myc and cyclinD1 in J774A.1 cells.

Application: WB    Species: Mice    Sample: J774A.1 cells

FIGURE 2 FKN promoted the viability of J774A.1 cells via Wnt/β‐catenin signalling. A, B, Cells were incubated with Wnt3a (25, 50 and 75 ng/ml) and ICG‐001 (5, 10 and 15 μM/ml) for 24, 48 and 72 h. The viability of cells was estimated using the CCK‐8 assay. C, IF assay for KI67 in J774A.1 cells. D, E, Western blotting analysis and their respective quantitation showing the protein expression of FKN, β‐catenin, Wnt‐4, c‐myc and cyclinD1 in J774A.1 cells. F, The secretion of cyclinD1 in J774A.1 cell supernatants was detected using ELISA. * P < .05 compared with the control group; # P < .05 compared with the LPS group. G, The subcellular localization of cyclin D1 was identified by immunostaining using anti‐Cyclin D1 and observed using confocal microscopy. Scale bars represent 10 μm

8). PIGU promotes hepatocellular carcinoma progression through activating NF-κB pathway and increasing immune escape. LIFE SCIENCES, 2020 (PubMed: 32971102) [IF=5.2]

Application: WB    Species: Human    Sample: HCC cells

Figure 2 PIGU knockdown inhibits proliferation and promotes apoptosis of HCC cells. After Hep-3B and Huh-7 cells were transfected with si-PIGU 1, si-PIGU 2, or its NC for 48 h, the mRNA and protein expression levels of PIGU were determined by RT-qPCR and Western blotting (A and B), cell viability was determined by CCK-8 assay (C and D), cell cycle distribution and apoptosis was evaluated by flow cytometry analysis (E and F), c-Myc, PCNA, cyclin D1, cleaved-caspase 3, and cleaved-PARP protein levels were detected by Western blotting (G). The densitometry of each band was normalized with that of respective β-actin. Data are means ± SD, n = 3. *P < 0.05 compared with si-NC group. PIGU, phosphodylinositol glycan anchor biosynthesis class U; RT-qPCR, quantitative Real-Time PCR; CCK-8, cell counting kit-8; SD, standard deviation; NC, negative control.

9). Upregulation of E‑cadherin expression mediated by a novel dsRNA suppresses the growth and metastasis of bladder cancer cells by inhibiting β-catenin/TCF target genes. INTERNATIONAL JOURNAL OF ONCOLOGY, 2018 (PubMed: 29620261) [IF=4.5]

10). Exploration and Validation of a Novel Inflammatory Response-Associated Gene Signature to Predict Osteosarcoma Prognosis and Immune Infiltration. Journal of inflammation research, 2021 (PubMed: 34916821) [IF=4.5]

加载更多

限制条款

产品的规格、报价、验证数据请以官网为准,官网链接:www.affbiotech.com | www.affbiotech.cn(简体中文)| www.affbiotech.jp(日本語)

产品的数据信息为Affinity所有,未经授权不得收集Affinity官网数据或资料用于商业用途,对抄袭产品数据的行为我们将保留诉诸法律的权利。

产品相关数据会因产品批次、产品检测情况随时调整,如您已订购该产品,请以订购时随货说明书为准,否则请以官网内容为准,官网内容有改动时恕不另行通知。

Affinity保证所销售产品均经过严格质量检测。如您购买的商品在规定时间内出现问题需要售后时,请您在Affinity官方渠道提交售后申请。

产品仅供科学研究使用。不用于诊断和治疗。 

产品未经授权不得转售。

Affinity Biosciences将不会对在使用我们的产品时可能发生的专利侵权或其他侵权行为负责。Affinity Biosciences, Affinity Biosciences标志和所有其他商标所有权归Affinity Biosciences LTD.