产品: 磷酸化 STAT3 (Tyr705) 抗体
货号: AF3293
描述: Rabbit polyclonal antibody to Phospho-STAT3 (Tyr705)
应用: WB IHC IF/ICC IP
文献验证: WB, IHC, IF/ICC
反应: Human, Mouse, Rat
预测: Pig, Zebrafish, Bovine, Horse, Sheep, Rabbit, Chicken
蛋白号: P40763
RRID: AB_2810278

浏览相似产品>>

   规格 价格 库存
 50ul RMB¥ 1300 现货
 100ul RMB¥ 2400 现货
 200ul RMB¥ 3200 现货

货期: 当天发货

联系销售

产品描述

来源:
Rabbit
应用:
WB 1:500-1:2000, IHC 1:50-1:200, IP, IF/ICC 1:100-1:500
*The optimal dilutions should be determined by the end user.
*Tips:

WB: 适用于变性蛋白样本的免疫印迹检测. IHC: 适用于组织样本的石蜡(IHC-p)或冰冻(IHC-f)切片样本的免疫组化/荧光检测. IF/ICC: 适用于细胞样本的荧光检测. ELISA(peptide): 适用于抗原肽的ELISA检测.

反应:
Human, Mouse, Rat
克隆:
Polyclonal
特异性:
Phospho-STAT3 (Tyr705) Antibody detects endogenous levels of STAT3 only when phosphorylated at Tyrosine 705.
RRID:
AB_2810278
引用格式: Affinity Biosciences Cat# AF3293, RRID:AB_2810278.
偶联:
Unconjugated.
纯化:
The antibody is from purified rabbit serum by affinity purification via sequential chromatography on phospho-peptide and non-phospho-peptide affinity columns.
保存:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
别名:

展开/折叠

1110034C02Rik; Acute Phase Response Factor; Acute-phase response factor; ADMIO; APRF; AW109958; DNA binding protein APRF; FLJ20882; HIES; MGC16063; Signal transducer and activator of transcription 3 (acute phase response factor); Signal transducer and activator of transcription 3; STAT 3; Stat3; STAT3_HUMAN;

抗原和靶标

免疫原:

A synthesized peptide derived from human STAT3 around the phosphorylation site of Tyr705.

基因/基因ID:
描述:
The protein encoded by this gene is a member of the STAT protein family. In response to cytokines and growth factors, STAT family members are phosphorylated by the receptor associated kinases, and then form homo- or heterodimers that translocate to the cell nucleus where they act as transcription activators.

研究领域

· Cellular Processes > Cell growth and death > Necroptosis.   (View pathway)

· Cellular Processes > Cellular community - eukaryotes > Signaling pathways regulating pluripotency of stem cells.   (View pathway)

· Environmental Information Processing > Signal transduction > HIF-1 signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > FoxO signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Jak-STAT signaling pathway.   (View pathway)

· Human Diseases > Drug resistance: Antineoplastic > EGFR tyrosine kinase inhibitor resistance.

· Human Diseases > Endocrine and metabolic diseases > Insulin resistance.

· Human Diseases > Infectious diseases: Parasitic > Toxoplasmosis.

· Human Diseases > Infectious diseases: Viral > Hepatitis C.

· Human Diseases > Infectious diseases: Viral > Hepatitis B.

· Human Diseases > Infectious diseases: Viral > Measles.

· Human Diseases > Infectious diseases: Viral > Epstein-Barr virus infection.

· Human Diseases > Cancers: Overview > Pathways in cancer.   (View pathway)

· Human Diseases > Cancers: Overview > Viral carcinogenesis.

· Human Diseases > Cancers: Overview > Proteoglycans in cancer.

· Human Diseases > Cancers: Overview > MicroRNAs in cancer.

· Human Diseases > Cancers: Specific types > Pancreatic cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Acute myeloid leukemia.   (View pathway)

· Human Diseases > Cancers: Specific types > Non-small cell lung cancer.   (View pathway)

· Human Diseases > Immune diseases > Inflammatory bowel disease (IBD).

· Organismal Systems > Immune system > Chemokine signaling pathway.   (View pathway)

· Organismal Systems > Immune system > Th17 cell differentiation.   (View pathway)

· Organismal Systems > Endocrine system > Prolactin signaling pathway.   (View pathway)

· Organismal Systems > Endocrine system > Adipocytokine signaling pathway.

文献引用

1). A Bioinspired Manganese-Organic Framework Ameliorates Ischemic Stroke through its Intrinsic Nanozyme Activity and Upregulating Endogenous Antioxidant Enzymes. Advanced Science, 2023 (PubMed: 37129343) [IF=15.1]

Application: WB    Species: Mouse    Sample: N2a cells

Figure 3 The effect of pDA-MNOF on upregulating HO1 and SOD2 via STAT3 signaling. a) Western blot analysis of p-STAT3, STAT3, HO1, and SOD2 expression in N2a cells treated with 12.5 µg mL−1 pDA-MNOF for various time durations. b) Quantification of the band intensity ratios of p-STAT3/STAT3, HO1/β-actin, and SOD2/β-actin in (a). t-STAT3 indicated total proteins of p-STAT3 and STAT3. c) Quantification of fluorescent intensity of p-STAT3, HO1, and SOD2 in PBS or 12.5 µg mL−1 pDA-MNOF-treated N2a cells (n = 4). Data were presented with mean ± s.d.; *, p < 0.05; **, p < 0.01; T-test. d) Representative images of immunofluorescent staining for p-STAT3, HO-1, and SOD-2 (red) in indicated groups. Nuclei were stained in blue, and cell body was outlined with white dashed lines. Scale bar, 20 µm. e) Western blot analysis of p-STAT3, STAT3, HO1, and SOD2 expression in N2a cells treated with different concentrations of pDA-MNOF for 12 h. f) Quantification of the band intensity ratios of p-STAT3/STAT3, HO1/β-actin, and SOD2/β-actin in (e). g) Experimental scheme for the RNA interference and pathway inhibition assays. h) Western blot analysis of p-STAT3 and STAT3 in N2a cells treated with PBS, siRNA Control (siRNA Ctrl), siRNA 1#, siRNA 2#, and siRNA 3#. i) Quantification of the band intensity ratios of p-STAT3/β-actin and STAT3/β-actin in (h). j) N2a cells were transfected with siRNA Ctrl, siRNA 2#, and siRNA 3#, followed by treatment with pDA-MNOF; the lysates were analyzed with indicated antibodies. k) Quantification of the band intensity ratios of p-STAT3/β-actin, HO1/β-actin, and SOD2/β-actin in (j). Data were presented with mean ± s.d.; *, p < 0.05; ANOVA. l) N2a cells were treated with PBS or pDA-MNOF, followed by treatment with AG490; the lysates were analyzed with indicated antibodies. m) Quantification of the band intensity ratios of p-STAT3/STAT3, HO1/β-actin, and SOD2/β-actin in (l) (n = 3).

2). Fluoropolymer Coated DNA Nanoclews for Volumetric Visualization of Oligonucleotides Delivery and Near Infrared Light Activated Anti-Angiogenic Oncotherapy. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 2023 (PubMed: 37768835) [IF=15.1]

3). P2Y14R activation facilitates liver regeneration via CREB/DNMT3b/Dact-2/ β-Catenin signals in acute liver failure. Acta pharmaceutica Sinica. B, 2025 (PubMed: 40177539) [IF=14.7]

4). Gut dysbiosis promotes prostate cancer progression and docetaxel resistance via activating NF-κB-IL6-STAT3 axis. Microbiome, 2022 (PubMed: 35710492) [IF=13.8]

Application: IF/ICC    Species: Mouse    Sample: tumor tissue

Fig. 3 Intratumoral LPS activated NF-κB-IL6-STAT3 axis. A LPS levels in mouse feces and serum by ELISA; HE staining (scale bar, 50 μm) and histology score for colon tissue in the Abx and NC group. B Immunohistochemistry (scale bar, 50 μm) for LPS in subcutaneous and orthotopic tumor tissues and western blot of intratumoral LPS levels from three biological duplications for the Abx and NC group. C Transcription levels of cytokines by RT-qPCR and protein levels of IL6 in cell supernatant by ELISA in RM-1 cultured with LPS (100 μg/ml) for 24 h. D, E Immunofluorescence (scale bar, 100 μm) for p-p65 and p-STAT3 in RM-1 cultured with or without LPS for 24 h; western blot of relative proteins for RM-1 cultured with LPS at different concentrations for 24 h; transcription levels of IL6 by RT-qPCR and western blot of relative proteins in RM-1 cultured with LPS or LPS with BAY-11-7082 for 24 h; protein levels of p-STAT3 and STAT3 in RM-1 cultured with CM or CM with antibody-IL6 for 24 h. F, G IL6 levels in tumor tissue lysate and serum by ELISA. Western blot of relative proteins in tumor from three biological duplications. Immunohistochemistry of tumor tissues for p-p65- and p-STAT3-positive cell (scale bar, 50 μm). Statistical significance was assessed by unpaired Student’s T-test or LSD in one-way ANOVA. *p < 0.05, **p < 0.01, and ***p < 0.001: compared to the NC group; #p < 0.05, ##p < 0.01, and ###p < 0.001: compared to the LPS or CM group

Application: WB    Species: Mouse    Sample: tumor tissue

Fig. 3 Intratumoral LPS activated NF-κB-IL6-STAT3 axis. A LPS levels in mouse feces and serum by ELISA; HE staining (scale bar, 50 μm) and histology score for colon tissue in the Abx and NC group. B Immunohistochemistry (scale bar, 50 μm) for LPS in subcutaneous and orthotopic tumor tissues and western blot of intratumoral LPS levels from three biological duplications for the Abx and NC group. C Transcription levels of cytokines by RT-qPCR and protein levels of IL6 in cell supernatant by ELISA in RM-1 cultured with LPS (100 μg/ml) for 24 h. D, E Immunofluorescence (scale bar, 100 μm) for p-p65 and p-STAT3 in RM-1 cultured with or without LPS for 24 h; western blot of relative proteins for RM-1 cultured with LPS at different concentrations for 24 h; transcription levels of IL6 by RT-qPCR and western blot of relative proteins in RM-1 cultured with LPS or LPS with BAY-11-7082 for 24 h; protein levels of p-STAT3 and STAT3 in RM-1 cultured with CM or CM with antibody-IL6 for 24 h. F, G IL6 levels in tumor tissue lysate and serum by ELISA. Western blot of relative proteins in tumor from three biological duplications. Immunohistochemistry of tumor tissues for p-p65- and p-STAT3-positive cell (scale bar, 50 μm). Statistical significance was assessed by unpaired Student’s T-test or LSD in one-way ANOVA. *p < 0.05, **p < 0.01, and ***p < 0.001: compared to the NC group; #p < 0.05, ##p < 0.01, and ###p < 0.001: compared to the LPS or CM group

Application: IHC    Species: Mouse    Sample: tumor tissue

Fig. 3 Intratumoral LPS activated NF-κB-IL6-STAT3 axis. A LPS levels in mouse feces and serum by ELISA; HE staining (scale bar, 50 μm) and histology score for colon tissue in the Abx and NC group. B Immunohistochemistry (scale bar, 50 μm) for LPS in subcutaneous and orthotopic tumor tissues and western blot of intratumoral LPS levels from three biological duplications for the Abx and NC group. C Transcription levels of cytokines by RT-qPCR and protein levels of IL6 in cell supernatant by ELISA in RM-1 cultured with LPS (100 μg/ml) for 24 h. D, E Immunofluorescence (scale bar, 100 μm) for p-p65 and p-STAT3 in RM-1 cultured with or without LPS for 24 h; western blot of relative proteins for RM-1 cultured with LPS at different concentrations for 24 h; transcription levels of IL6 by RT-qPCR and western blot of relative proteins in RM-1 cultured with LPS or LPS with BAY-11-7082 for 24 h; protein levels of p-STAT3 and STAT3 in RM-1 cultured with CM or CM with antibody-IL6 for 24 h. F, G IL6 levels in tumor tissue lysate and serum by ELISA. Western blot of relative proteins in tumor from three biological duplications. Immunohistochemistry of tumor tissues for p-p65- and p-STAT3-positive cell (scale bar, 50 μm). Statistical significance was assessed by unpaired Student’s T-test or LSD in one-way ANOVA. *p < 0.05, **p < 0.01, and ***p < 0.001: compared to the NC group; #p < 0.05, ##p < 0.01, and ###p < 0.001: compared to the LPS or CM group

5). Apatinib triggers autophagic and apoptotic cell death via VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling in lung cancer. Journal of Experimental & Clinical Cancer Research, 2021 [IF=11.3]

Application: WB    Species: human    Sample: A549 and H1299 cells

Fig. 5 Apatinib downregulated VEGFR2/STAT3/PD-L1 pathway in NSCLC cells and reduced the immunosuppressive TME. a Western blot analysis of VEGFR2 and p-VEGFR2 (Tyr1175) expression and qRT-PCR analysis of VEGFR2 expression in A549 and H1299 cells after aptinib treatment for 48 h. The data are presented as mean ± SD (n = 3). **p 

6). Exosomal circPOLQ promotes macrophage M2 polarization via activating IL-10/STAT3 axis in a colorectal cancer model. Journal for immunotherapy of cancer, 2024 (PubMed: 38782541) [IF=10.9]

Application: WB    Species: Human    Sample:

Figure 7 Exosomal circPOLQ induces macrophage M2 polarization through the mir-379–3 p/IL-10/STAT3 axis. (A) TargetScan Human V.7.2 database predicts that miR-379–3 p may target the binding site of IL-10 and the mutation site of IL-10 MT. (B) A luciferase reporter gene activity assay was performed to determine the effect of the miR-379–3 p mimic on the 3’-UTR luciferase activity of WT/MT IL-10. (C) RNA pull-down was performed in 293 T cells, followed by qPCR and nucleic acid electrophoresis to detect the enrichment of IL-10. (D) Macrophages treated with HCT116 or SW620 exosomes were co-transfected with miR-379–3 p mimics and IL-10-overexpressing plasmids, and the expression of macrophage M2 polarization markers was detected by qPCR. (E) Macrophages treated with HCT116 or SW620 exosomes were co-transfected with miR-379–3 p inhibitor and IL-10 siRNA, and the expression of macrophage M2 polarization markers was detected by qPCR. (F) Macrophages treated with HCT116 or SW620 exosomes were transfected with circPOLQ siRNA, and the expressions of p-STAT3 and STAT3, key molecules of STAT3 signaling pathway, were detected by western blot. (G) Macrophages treated with HCT116 or SW620 exosomes were co-transfected with circPOLQ siRNA and miR-379–3 p inhibitor, and the expressions of p-STAT3 and STAT3, key molecules of STAT3 signaling pathway, were detected by western blot. (H) Macrophages treated with HCT116 exosomes were co-transfected with miR-379–3 p mimics and overexpressed IL-10 plasmids, and the key molecules of STAT3 signaling pathway p-STAT3 and macrophage M2 polarization markers were detected by western blot. (I) Macrophages treated with HCT116 exosomes were co-transfected with miR-379–3 p inhibitor and IL-10 siRNA, and the key molecules of STAT3 signaling pathway p-STAT3 and macrophage M2 polarization markers were detected by western blot. (J, K) Macrophages treated with HCT116 exosomes were co-transfected with circPOLQ siRNA and overexpressed IL-10 plasmids, and the expression of macrophage M2 polarization markers was detected by qPCR. (L, M) Macrophages treated with HCT116 exosomes were co-transfected with circPOLQ siRNA and overexpressed IL-10 plasmids, and the expression of CD206 was detected by FACS and the positive rate of CD206 was measured by FlowJo. Statistical significance was calculated by Student’s t-test. Data in the text were expressed as mean±SD, *p

7). Targeting CDCP1 boost CD8+ T cells-mediated cytotoxicity in cervical cancer via the JAK/STAT signaling pathway. Journal for immunotherapy of cancer, 2024 (PubMed: 39455095) [IF=10.9]

8). Lacc1-engineered extracellular vesicles reprogram mitochondrial metabolism to alleviate inflammation and cartilage degeneration in TMJ osteoarthritis. Journal of nanobiotechnology, 2025 (PubMed: 40186254) [IF=10.2]

9). Aligned electrospun poly(l-lactide) nanofibers facilitate wound healing by inhibiting macrophage M1 polarization via the JAK-STAT and NF-κB pathways. JOURNAL OF NANOBIOTECHNOLOGY, 2022 (PubMed: 35883095) [IF=10.2]

Application: WB    Species: Mice    Sample:

Fig. 3 The underlying mechanism by which aligned fibers affected macrophage polarization. A Venn diagram showing differentially expressed genes. B KEGG pathway analysis between the A20 and R20 groups. C Heatmap of differentially expressed genes among the three groups. D Heatmap of macrophage polarization-related genes between the A20 and R20 groups. E Volcano diagram of differentially expressed genes. F Western blot analysis of the NF-κB signaling pathway. G Immunofluorescence staining showing the nuclear translocation of NF-κB p65. The nucleus is stained blue, and NF-κB p65 protein is stained red. H Western blot images and semiquantitative analysis of the JAK-STAT signaling pathway (*p < 0.05, **p < 0.01, n = 3)

10). A hybrid nanopharmaceutical for specific-amplifying oxidative stress to initiate a cascade of catalytic therapy for pancreatic cancer. Journal of nanobiotechnology, 2023 (PubMed: 37221521) [IF=10.2]

加载更多

限制条款

产品的规格、报价、验证数据请以官网为准,官网链接:www.affbiotech.com | www.affbiotech.cn(简体中文)| www.affbiotech.jp(日本語)

产品的数据信息为Affinity所有,未经授权不得收集Affinity官网数据或资料用于商业用途,对抄袭产品数据的行为我们将保留诉诸法律的权利。

产品相关数据会因产品批次、产品检测情况随时调整,如您已订购该产品,请以订购时随货说明书为准,否则请以官网内容为准,官网内容有改动时恕不另行通知。

Affinity保证所销售产品均经过严格质量检测。如您购买的商品在规定时间内出现问题需要售后时,请您在Affinity官方渠道提交售后申请。

产品仅供科学研究使用。不用于诊断和治疗。 

产品未经授权不得转售。

Affinity Biosciences将不会对在使用我们的产品时可能发生的专利侵权或其他侵权行为负责。Affinity Biosciences, Affinity Biosciences标志和所有其他商标所有权归Affinity Biosciences LTD.