单价 规格
¥1200 50ul
¥2200 100ul
¥2800 200ul

当天发货

  • 名 称:
    磷酸化 NF kappaB p65 (Ser536) 抗体
  • 货 号:
    AF2006
  • 来 源:
    Rabbit
  • 应 用:
    WB,IHC,IF/ICC,IP,ELISA
  • 反 应:
    Human, Mouse, Rat
  • 预 测:
    Pig(100%), Bovine(91%), Horse(91%), Sheep(91%), Dog(100%)
  • 蛋白号:
  • 分子量:
    65kDa
  • 浓 度:
    1mg/ml
  • 浏览相似产品>>

产品信息

Alternative Names:Expand▼

Avian reticuloendotheliosis viral (v rel) oncogene homolog A; MGC131774; NF kappa B p65delta3; NFKB3; Nuclear Factor NF Kappa B p65 Subunit; Nuclear factor NF-kappa-B p65 subunit; Nuclear factor of kappa light polypeptide gene enhancer in B cells 3; Nuclear factor of kappa light polypeptide gene enhancer in B-cells 3; OTTHUMP00000233473; OTTHUMP00000233474; OTTHUMP00000233475; OTTHUMP00000233476; OTTHUMP00000233900; p65; p65 NF kappaB; p65 NFkB; relA; TF65_HUMAN; Transcription factor p65; v rel avian reticuloendotheliosis viral oncogene homolog A (nuclear factor of kappa light polypeptide gene enhancer in B cells 3 (p65)); V rel avian reticuloendotheliosis viral oncogene homolog A; v rel reticuloendotheliosis viral oncogene homolog A (avian); V rel reticuloendotheliosis viral oncogene homolog A, nuclear factor of kappa light polypeptide gene enhancer in B cells 3, p65;

Applications:

WB 1:500-1:2000, IHC 1:50-1:500, IP 1:100-1:500, IF 1:200, ELISA(peptide) 1:20000-1:40000

Reactivity:

Human, Mouse, Rat

Predicted Reactivity:

Pig(100%), Bovine(91%), Horse(91%), Sheep(91%), Dog(100%)

Source:

Rabbit

Clonality:

Polyclonal

Purification:

The antibody is from purified rabbit serum by affinity purification via sequential chromatography on phospho-peptide and non-phospho-peptide affinity columns.

Specificity:

Phospho-NF- kappaB p65 (Ser536) Antibody detects endogenous levels of NF- kappaB p65 only when phosphorylated at Serine 536.

Format:

Liquid

Concentration:

1mg/ml

Storage Condition and Buffer:

Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, sodium azide and glycerol.Store at -20 °C.Stable for 12 months from date of receipt.

免疫原

Immunogen:

A synthesized peptide derived from human NF- kappaB p65 around the phosphorylation site of Ser536.

Uniprot:



>>Visit The Human Protein Atlas

Gene id:

Molecular Weight:

Observed Mol.Wt.: 65kDa.
Predicted Mol.Wt.: 61kDa.

Subcellular Location:

Nucleus. Cytoplasm. Nuclear, but also found in the cytoplasm in an inactive form complexed to an inhibitor (I-kappa-B). Colocalized with RELA in the nucleus upon TNF-alpha induction.

Description:

NFKB1 (MIM 164011) or NFKB2 (MIM 164012) is bound to REL (MIM 164910), RELA, or RELB (MIM 604758) to form the NFKB complex. The p50 (NFKB1)/p65 (RELA) heterodimer is the most abundant form of NFKB. The NFKB complex is inhibited by I-kappa-B proteins (NFKBIA, MIM 164008 or NFKBIB, MIM 604495), which inactivate NFKB by trapping it in the cytoplasm.

Sequence:
        10         20         30         40         50
MDELFPLIFP AEPAQASGPY VEIIEQPKQR GMRFRYKCEG RSAGSIPGER
60 70 80 90 100
STDTTKTHPT IKINGYTGPG TVRISLVTKD PPHRPHPHEL VGKDCRDGFY
110 120 130 140 150
EAELCPDRCI HSFQNLGIQC VKKRDLEQAI SQRIQTNNNP FQVPIEEQRG
160 170 180 190 200
DYDLNAVRLC FQVTVRDPSG RPLRLPPVLS HPIFDNRAPN TAELKICRVN
210 220 230 240 250
RNSGSCLGGD EIFLLCDKVQ KEDIEVYFTG PGWEARGSFS QADVHRQVAI
260 270 280 290 300
VFRTPPYADP SLQAPVRVSM QLRRPSDREL SEPMEFQYLP DTDDRHRIEE
310 320 330 340 350
KRKRTYETFK SIMKKSPFSG PTDPRPPPRR IAVPSRSSAS VPKPAPQPYP
360 370 380 390 400
FTSSLSTINY DEFPTMVFPS GQISQASALA PAPPQVLPQA PAPAPAPAMV
410 420 430 440 450
SALAQAPAPV PVLAPGPPQA VAPPAPKPTQ AGEGTLSEAL LQLQFDDEDL
460 470 480 490 500
GALLGNSTDP AVFTDLASVD NSEFQQLLNQ GIPVAPHTTE PMLMEYPEAI
510 520 530 540 550
TRLVTGAQRP PDPAPAPLGA PGLPNGLLSG DEDFSSIADM DFSALLSQIS

S

研究背景

Function:

NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-kappa-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-kappa-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-kappa-B complex. Associates with chromatin at the NF-kappa-B promoter region via association with DDX1. Essential for cytokine gene expression in T-cells (PubMed:15790681).

Post-translational Modifications:

Ubiquitinated, leading to its proteasomal degradation. Degradation is required for termination of NF-kappa-B response.Monomethylated at Lys-310 by SETD6. Monomethylation at Lys-310 is recognized by the ANK repeats of EHMT1 and promotes the formation of repressed chromatin at target genes, leading to down-regulation of NF-kappa-B transcription factor activity. Phosphorylation at Ser-311 disrupts the interaction with EHMT1 without preventing monomethylation at Lys-310 and relieves the repression of target genes (By similarity).Phosphorylation at Ser-311 disrupts the interaction with EHMT1 and promotes transcription factor activity (By similarity). Phosphorylation on Ser-536 stimulates acetylation on Lys-310 and interaction with CBP; the phosphorylated and acetylated forms show enhanced transcriptional activity. Phosphorylation at Ser-276 by RPS6KA4 and RPS6KA5 promotes its transactivation and transcriptional activities.Reversibly acetylated; the acetylation seems to be mediated by CBP, the deacetylation by HDAC3 and SIRT2. Acetylation at Lys-122 enhances DNA binding and impairs association with NFKBIA. Acetylation at Lys-310 is required for full transcriptional activity in the absence of effects on DNA binding and NFKBIA association. Acetylation at Lys-310 promotes interaction with BRD4. Acetylation can also lower DNA-binding and results in nuclear export. Interaction with BRMS1 promotes deacetylation of Lys-310. Lys-310 is deacetylated by SIRT2.S-nitrosylation of Cys-38 inactivates the enzyme activity.Sulfhydration at Cys-38 mediates the anti-apoptotic activity by promoting the interaction with RPS3 and activating the transcription factor activity.Sumoylation by PIAS3 negatively regulates DNA-bound activated NF-kappa-B.Proteolytically cleaved within a conserved N-terminus region required for base-specific contact with DNA in a CPEN1-mediated manner, and hence inhibits NF-kappa-B transcriptional activity (PubMed:18212740).

Subcellular Location:

Nucleus;

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte

Subunit Structure:

Component of the NF-kappa-B p65-p50 complex. Component of the NF-kappa-B p65-c-Rel complex. Homodimer; component of the NF-kappa-B p65-p65 complex. Component of the NF-kappa-B p65-p52 complex. May interact with ETHE1. Binds AES and TLE1. Interacts with TP53BP2. Binds to and is phosphorylated by the activated form of either RPS6KA4 or RPS6KA5. Interacts with ING4 and this interaction may be indirect. Interacts with CARM1, USP48 and UNC5CL. Interacts with IRAK1BP1 (By similarity). Interacts with NFKBID (By similarity). Interacts with NFKBIA. Interacts with GSK3B. Interacts with NFKBIB (By similarity). Interacts with NFKBIE. Interacts with NFKBIZ. Interacts with EHMT1 (via ANK repeats) (By similarity). Part of a 70-90 kDa complex at least consisting of CHUK, IKBKB, NFKBIA, RELA, ELP1 and MAP3K14. Interacts with HDAC3; HDAC3 mediates the deacetylation of RELA. Interacts with HDAC1; the interaction requires non-phosphorylated RELA. Interacts with CBP; the interaction requires phosphorylated RELA. Interacts (phosphorylated at 'Thr-254') with PIN1; the interaction inhibits p65 binding to NFKBIA. Interacts with SOCS1. Interacts with UXT. Interacts with MTDH and PHF11. Interacts with ARRB2. Interacts with human respiratory syncytial virus (HRSV) protein M2-1. Interacts with NFKBIA (when phosphorylated), the interaction is direct; phosphorylated NFKBIA is part of a SCF(BTRC)-like complex lacking CUL1. Interacts with RNF25. Interacts (via C-terminus) with DDX1. Interacts with UFL1 and COMMD1. Interacts with BRMS1; this promotes deacetylation of 'Lys-310'. Interacts with NOTCH2 (By similarity). Directly interacts with MEN1; this interaction represses NFKB-mediated transactivation. Interacts with AKIP1, which promotes the phosphorylation and nuclear retention of RELA. Interacts (via the RHD) with GFI1; the interaction, after bacterial lipopolysaccharide (LPS) stimulation, inhibits the transcriptional activity by interfering with the DNA-binding activity to target gene promoter DNA. Interacts (when acetylated at Lys-310) with BRD4; leading to activation of the NF-kappa-B pathway. Interacts with MEFV. Interacts with CLOCK (By similarity). Interacts (via N-terminus) with CPEN1; this interaction induces proteolytic cleavage of p65/RELA subunit and inhibition of NF-kappa-B transcriptional activity (PubMed:18212740). Interacts with FOXP3. Interacts with CDK5RAP3; stimulates the interaction of RELA with HDAC1, HDAC2 and HDAC3 thereby inhibiting NF-kappa-B transcriptional activity (PubMed:17785205). Interacts with DHX9; this interaction is direct and activates NF-kappa-B-mediated transcription (PubMed:15355351). Interacts with LRRC25 (PubMed:29044191). Interacts with TBX21 (By similarity). Interacts with KAT2A (By similarity).

Similarity:

the 9aaTAD motif is a transactivation domain present in a large number of yeast and animal transcription factors.

研究领域

Research Fields:

· Cellular Processes > Cell growth and death > Apoptosis.(View pathway)
· Cellular Processes > Cell growth and death > Cellular senescence.(View pathway)
· Environmental Information Processing > Signal transduction > NF-kappa B signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > TNF signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > MAPK signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > Sphingolipid signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > Ras signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > HIF-1 signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > PI3K-Akt signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > cAMP signaling pathway.(View pathway)
· Human Diseases > Cancers: Specific types > Pancreatic cancer.(View pathway)
· Human Diseases > Cancers: Overview > Pathways in cancer.(View pathway)
· Human Diseases > Cancers: Specific types > Acute myeloid leukemia.(View pathway)
· Human Diseases > Cancers: Specific types > Chronic myeloid leukemia.(View pathway)
· Human Diseases > Infectious diseases: Bacterial > Legionellosis.
· Human Diseases > Cancers: Specific types > Small cell lung cancer.(View pathway)
· Human Diseases > Infectious diseases: Bacterial > Pertussis.
· Human Diseases > Infectious diseases: Bacterial > Salmonella infection.
· Human Diseases > Endocrine and metabolic diseases > Insulin resistance.
· Human Diseases > Infectious diseases: Bacterial > Shigellosis.
· Human Diseases > Infectious diseases: Viral > Herpes simplex infection.
· Human Diseases > Infectious diseases: Viral > Hepatitis C.
· Human Diseases > Infectious diseases: Parasitic > Amoebiasis.
· Human Diseases > Cancers: Overview > Viral carcinogenesis.
· Human Diseases > Infectious diseases: Viral > Measles.
· Human Diseases > Infectious diseases: Viral > Hepatitis B.
· Human Diseases > Infectious diseases: Viral > Human papillomavirus infection.
· Human Diseases > Infectious diseases: Parasitic > Chagas disease (American trypanosomiasis).
· Human Diseases > Infectious diseases: Bacterial > Epithelial cell signaling in Helicobacter pylori infection.
· Human Diseases > Infectious diseases: Bacterial > Tuberculosis.
· Human Diseases > Infectious diseases: Viral > Influenza A.
· Human Diseases > Immune diseases > Inflammatory bowel disease (IBD).
· Human Diseases > Infectious diseases: Viral > Epstein-Barr virus infection.
· Human Diseases > Infectious diseases: Parasitic > Leishmaniasis.
· Human Diseases > Infectious diseases: Viral > HTLV-I infection.
· Human Diseases > Drug resistance: Antineoplastic > Antifolate resistance.
· Human Diseases > Endocrine and metabolic diseases > Non-alcoholic fatty liver disease (NAFLD).
· Human Diseases > Substance dependence > Cocaine addiction.
· Human Diseases > Cancers: Overview > Transcriptional misregulation in cancer.
· Human Diseases > Infectious diseases: Parasitic > Toxoplasmosis.
· Human Diseases > Cancers: Specific types > Prostate cancer.(View pathway)
· Organismal Systems > Immune system > Th1 and Th2 cell differentiation.(View pathway)
· Organismal Systems > Immune system > RIG-I-like receptor signaling pathway.(View pathway)
· Organismal Systems > Immune system > Toll-like receptor signaling pathway.(View pathway)
· Organismal Systems > Immune system > IL-17 signaling pathway.(View pathway)
· Organismal Systems > Immune system > T cell receptor signaling pathway.(View pathway)
· Organismal Systems > Endocrine system > Relaxin signaling pathway.
· Organismal Systems > Immune system > Cytosolic DNA-sensing pathway.(View pathway)
· Organismal Systems > Endocrine system > Adipocytokine signaling pathway.
· Organismal Systems > Immune system > Th17 cell differentiation.(View pathway)
· Organismal Systems > Endocrine system > Prolactin signaling pathway.(View pathway)
· Organismal Systems > Nervous system > Neurotrophin signaling pathway.(View pathway)
· Organismal Systems > Development > Osteoclast differentiation.(View pathway)
· Organismal Systems > Aging > Longevity regulating pathway.(View pathway)
· Organismal Systems > Immune system > NOD-like receptor signaling pathway.(View pathway)
· Organismal Systems > Immune system > Chemokine signaling pathway.(View pathway)
· Organismal Systems > Immune system > B cell receptor signaling pathway.(View pathway)

Western blot analysis of extracts from Hela cells cells treated with TNF-α, using Phospho-NF kappaB p65 (Ser536) Antibody. The lane on the left was treated with blocking peptide.
AF2006 at 1/100 staining rat lung tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF2006 at 1/100 staining rat ovarian tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF2006 at 1/100 staining rat uterine tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF2006 at 1/100 staining human liver tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF2006 at 1/100 staining human brain tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF2006 at 1/100 staining human heart tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF2006 at 1/100 staining mouse testis tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF2006 at 1/100 staining mouse kidney tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF2006 at 1/100 staining mouse gastric tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF2006 staining lovo cells by ICC/IF. Cells were fixed with PFA and permeabilized in 0.1% saponin prior to blocking in 10% serum for 45 minutes at 37°C. The primary antibody was diluted 1/400 and incubated with the sample for 1 hour at 37°C. A Alexa Fluor® 594 conjugated goat polyclonal to rabbit IgG (H+L), diluted 1/600 was used as secondary antibody.
ELISA analysis of AF2006 showing specificity to Phospho-NF kappaB p65 (Ser536) peptide. Peptides concentration: 1ug/ml.
P-peptide: phospho-peptide; N-peptide: non-phospho-peptide.

Reference Citations:

1). Zhang Z et al. Clearance of apoptotic cells by mesenchymal stem cells contributes to immunosuppression via PGE2. EBioMedicine 2019 Jun 24 (PubMed: 31248835) [IF=6.680]

2). Huang Y et al. LncRNA AK023391 promotes tumorigenesis and invasion of gastric cancer through activation of the PI3K/Akt signaling pathway. J Exp Clin Cancer Res 2017 Dec 28;36(1):194 (PubMed: 29282102) [IF=5.646]

3). Chen T et al. Epstein-Barr virus tegument protein BGLF2 inhibits NF-κB activity by preventing p65 Ser536 phosphorylation. FASEB J 2019 Jul 23:fj201901196RR (PubMed: 31337264) [IF=5.391]

4). Chen X et al. Galectin-3 exacerbates ox-LDL-mediated endothelial injury by inducing inflammation via integrin β1-RhoA-JNK signaling activation. J Cell Physiol 2018 Dec 10 (PubMed: 30536538) [IF=4.522]

5). Ding L et al. Noncoding transcribed ultraconserved region (T-UCR) UC.48+ is a novel regulator of high-fat diet induced myocardial ischemia/reperfusion injury. J Cell Physiol 2018 Nov 11 (PubMed: 30417395) [IF=4.522]

6). Li K et al. High cholesterol inhibits tendon-related gene expressions in tendon-derived stem cells through reactive oxygen species-activated nuclear factor-κB signaling. J Cell Physiol 2019 Mar 1 (PubMed: 30825206) [IF=4.522]

7). Wu M et al. Resveratrol delays polycystic kidney disease progression through attenuation of nuclear factor κB-induced inflammation. Nephrol Dial Transplant 2016 Nov;31(11):1826-1834 (PubMed: 27190325) [IF=4.198]

Application: WB    Species:rat;    Sample:Not available

FIGURE 3: Pro-inflammatory factors, anti-oxidant enzyme and cell signaling pathways in resveratrol (Res)- or vehicle-treated cystic kidneys. (A) TNF-α, MCP-1, CFB and SOD2 were analyzed by western blot in 9-week-old +/+ and Cy/+ kidneys. (B–E) Immunohistochemical staining for oxidative stress markers 8-OHdG and nitrotyrosine in the tubulointerstitial area. Computer-assisted morphometry was used to quantify changes of 8-OHdG and nitrotyrosine in each group. Scale bar = 50 µm. (F) NF-κB pathway ( p-p65, p65, p105 and p50) and mTOR pathway ( p-S6K and total S6K) were analyzed by western blot in 9-week-old +/+ and Cy/+ kidneys. Blots are representative of three independent experiments.


8). Li CL et al. Comparison of anti-inflammatory effects of berberine, and its natural oxidative and reduced derivatives from Rhizoma Coptidis in vitro and in vivo. Phytomedicine 2019 Jan;52:272-283 (PubMed: 30599908) [IF=4.180]

9). Wang S et al. E2F2 directly regulates the STAT1 and PI3K/AKT/NF-κB pathways to exacerbate the inflammatory phenotype in rheumatoid arthritis synovial fibroblasts and mouse embryonic fibroblasts. Arthritis Res Ther 2018 Oct 4;20(1):225 (PubMed: 30286793) [IF=4.148]

10). Yang YF et al. Ficolin-A/2, acting as a new regulator of macrophage polarization, mediates the inflammatory response in experimental mouse colitis. Immunology 2017 Aug;151(4):433-450 (PubMed: 28380665) [IF=4.147]

Application: WB    Species:mouse;    Sample:Not available

Figure 7. FCN-A promoted the M1 polarization of BMDMs through a TLR4/MyD88-dependent pathway in vitro. (a) The protein expressions of the purified GST-FCN-A and GST were determined by SDS-PAGE. (b) The extracted membrane proteins from RAW264.7 cells were incubated with the purified GST-FCN-A or GST proteins. Co-IP analysis of the interaction between TLR4 of macrophage and GST-FCN-A was performed by using anti-TLR4. Rabbit IgG was used as a negative control in co-IP. (c, e) BMDMs, isolated from WT, TLR4-/- or MyD88-/- mice, were stimulated with FCN-A (10g/mL) for 24 h, then the expressions of iNOS and Arg-1 from BMDMs were examined by Western blot analysis. (d, f) The levels of pro-inflammatory cytokines IL-1in cell lysates, and secreted IL-6, TNF- were detected by ELISA. (g, h) Western blot analysis of p-IRAK1, p-p65, p-ERK1/2, and p-JNK in the BMDM lysates of TLR4-/-, MyD88-/- or WT after stimulation with FCN-A for 0-45 min. In d and f, values are mean ± [SEM] from three independent experiments.


11). Zhou S et al. AMPK deficiency in chondrocytes accelerated the progression of instability-induced and ageing-associated osteoarthritis in adult mice. Sci Rep 2017 Feb 22;7:43245 (PubMed: 28225087) [IF=4.011]

Application: WB    Species:mouse;    Sample:Not available

(c) Western blotting analyses of total NF-κ B p65 and phospho-NF-κB p65 in primary murine chondrocytes with or without IL-1β (10 ng/ml) for 24h. Increased phospho-NF-κB p65 protein expression in chondrocytes from AMPKα cDKO mice compared with their WT littermates was observed. GAPDH served as a loading control.

Application: IHC    Species:mouse;    Sample:Not available

Figure 6. IHC analyses of surgically induced and ageing-associated OA. (a,c and e) Representative IHC images of MMP-3, MMP-13 and phospho-NF-κB p65 in the medial tibial plateau in AMPKα1α2 conditional double knockout (AMPKα cDKO) mice and their WT littermates 2 weeks post-sham operation and DMM surgery or in mice at 9 months of age. Scale bars=20μm. The cellularity of the section was confirmed with haematoxylin staining.


12). Xu M et al. Effect of compound sophorae decoction on dextran sodium sulfate (DSS)-induced colitis in mice by regulating Th17/Treg cell balance. Biomed Pharmacother 2019 Jan;109:2396-2408 (PubMed: 30551499) [IF=3.743]

13). Yang Y et al. Black Sesame Seeds Ethanol Extract Ameliorates Hepatic Lipid Accumulation, Oxidative Stress and Insulin Resistance in Fructose-induced Nonalcoholic Fatty Liver Disease. J Agric Food Chem 2018 Sep 24 (PubMed: 30244573) [IF=3.571]

14). Ding W et al. Therapeutic mild hypothermia improves early outcomes in rats subjected to severe sepsis. Life Sci 2018 Apr 15;199:1-9 (PubMed: 29505782) [IF=3.448]

15). Tan L et al. Dihydroberberine, a hydrogenated derivative of berberine firstly identified in Phellodendri Chinese Cortex, exerts anti-inflammatory effect via dual modulation of NF-κB and MAPK signaling pathways. Int Immunopharmacol 2019 Aug 8;75:105802 (PubMed: 31401380) [IF=3.361]

16). Zhou J et al. Brusatol ameliorates 2, 4, 6-trinitrobenzenesulfonic acid-induced experimental colitis in rats: Involvement of NF-κB pathway and NLRP3 inflammasome. Int Immunopharmacol 2018 Sep 12;64:264-274 (PubMed: 30218953) [IF=3.361]

17). Jiang W et al. Tongxinluo inhibits neointimal formation by regulating the expression and post-translational modification of KLF5 in macrophages. Am J Transl Res 2016 Nov 15;8(11):4778-4790 (PubMed: 27904679) [IF=3.266]

18). Lu M et al. CTGF Triggers Rat Astrocyte Activation and Astrocyte-Mediated Inflammatory Response in Culture Conditions. Inflammation 2019 Jun 10 (PubMed: 31183597)

19). Zhu L et al. miR-199b-5p Regulates Immune-Mediated Allograft Rejection after Lung Transplantation Through the GSK3β and NF-κB Pathways. Inflammation 2018 Aug;41(4):1524-1535 (PubMed: 29779167)

20). Wang Y et al. Suppressive effect mediated by human adipose-derived stem cells on T cells involves the activation of JNK. Int J Mol Med 2018 Oct 24 (PubMed: 30365063)

21). Yang M et al. Estrogen receptor β exhibited anti-tumor effects on osteosarcoma cells by regulating integrin, IAP, NF-kB/BCL-2 and PI3K/Akt signal pathway. J Bone Oncol 2017 Sep 28;9:15-20 (PubMed: 29071206)

Application: WB    Species:human;    Sample:Not available

Fig 5. The expression of p-p65, p-AKT and Bcl-2 (protein level) in U2-OS cells treated by LY294002 or/and Estrogen receptor β (ERβ) siRNA in the presence of 10-10 M E2.


22). Jiao XF et al. Effects of Acute Fluorene-9-Bisphenol Exposure on Mouse Oocyte in vitro Maturation and Its Possible Mechanisms. Environ Mol Mutagen 2018 Nov 30 (PubMed: 30499614)

23). Zhang K et al. Beneficial effects of tolvaptan on atrial remodeling induced by chronic intermittent hypoxia in rats. Cardiovasc Ther 2018 Sep 11:e12466 (PubMed: 30203914)

24). Xu J et al. LYPD8 regulates the proliferation and migration of colorectal cancer cells through inhibiting the secretion of IL‑6 and TNF‑α. Oncol Rep 2019 Feb 26 (PubMed: 30816524)

25). Li C et al. TREM2 inhibits inflammatory responses in mouse microglia by suppressing the PI3K/NF-κB signaling. Cell Biol Int 2018 Apr 16 (PubMed: 29663649)

26). Li C et al. TREM2 inhibits inflammatory responses in mouse microglia by suppressing the PI3K/NF-κB signaling. Cell Biol Int 2018 Apr 16 (PubMed: 29663649)

27). Li C et al. TREM2 inhibits inflammatory responses in mouse microglia by suppressing the PI3K/NF-κB signaling. Cell Biol Int 2018 Apr 16 (PubMed: 29663649)

28). Zeng W et al. Survivin activates NF‑κB p65 via the IKKβ promoter in esophageal squamous cell carcinoma. Mol Med Rep 2016 Feb;13(2):1869-80 (PubMed: 26718331)

Application: WB    Species:human;    Sample:human

Figure 3. Survivin overexpression results in upregulation of NF-κBp65, IKKα, IΚΚβ in Eca109 and KYSE150cells. (A and B) Eca109 and (C and D) KYSE150 cells were transfected with GV142-survivin overexpression plasmid (Eca109 survivin OE and KYSE150 survivin OE), GV142-control plasmid (Eca109 control and KYSE150 control), and mock transfection. Expression levels of survivin, NF-κB p65, IΚΚβ, and IΚΚα were analyzed by (A and C) RT‑qPCR and (B and D) western blotting of total protein. Transcript levels were measured by RT-qPCR of total isolated RNA, with GADPH serving as an internal control. Columns indicate the mean values from triplicate experiments and the error bars indicate standard deviation. * P<0.05; **P


29). Wu Z et al. EGFR‑associated pathways involved in traditional Chinese medicine (TCM)‑1‑induced cell growth inhibition, autophagy and apoptosis in prostate cancer. Mol Med Rep 2018 Jun;17(6):7875-7885 (PubMed: 29620175)

30). Wu Z et al. EGFR‑associated pathways involved in traditional Chinese medicine (TCM)‑1‑induced cell growth inhibition, autophagy and apoptosis in prostate cancer. Mol Med Rep 2018 Jun;17(6):7875-7885 (PubMed: 29620175)

31). Liu Y et al. Rapamycin Inhibits Nf-ΚB Activation by Autophagy to Reduce Catabolism in Human Chondrocytes. J Invest Surg 2019 Apr 4:1-13 (PubMed: 30945580)

32). Zhang X et al. Neuroprotective Effect of Modified Xijiao Dihuang Decoction against Oxygen-Glucose Deprivation and Reoxygenation-Induced Injury in PC12 Cells: Involvement of TLR4-MyD88/NF-κB Signaling Pathway. Evid Based Complement Alternat Med 2017;2017:3848595 (PubMed: 29234386)

33). Wu X et al. Antioxidative and Anti-Inflammatory Effects of Water Extract of Acrostichum aureum Linn. against Ethanol-Induced Gastric Ulcer in Rats. Evid Based Complement Alternat Med 2018 Dec 12;2018:3585394 (PubMed: 30643529)

34). Yang Z et al. miR-155-dependent regulation of mammalian sterile 20-like kinase 2 (MST2) coordinates inflammation, oxidative stress and proliferation in vascular smooth muscle cells. Biochim Biophys Acta 2015 Jul;1852(7):1477-89 (PubMed: 25892184)

Application: WB    Species:mouse;    Sample:mouse


35). et al. Limonin ameliorates ulcerative colitis by regulating STAT3/miR-214 signaling pathway.

36). Minfei Yang et al. Estrogen receptor β exhibited anti-tumor effects on osteosarcoma cells by regulating integrin, IAP, NFkB/BCL-2 and PI3K/Akt signal pathway. Journal of Bone Oncology 2017 Sep;9:15-20

暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页

评论提交

支持JPG,GIF,PNG图片
captcha
Catalog Number :

AF2006-BP

Price/Size :

¥2000/1mg.
Tips: For phospho antibody, we provide phospho peptide(0.5mg) and non-phospho peptide(0.5mg).

Function :

Blocking peptides are peptides that bind specifically to the target antibody and block antibody binding. These peptide usually contains the epitope recognized by the antibody. Antibodies bound to the blocking peptide no longer bind to the epitope on the target protein. This mechanism is useful when non-specific binding is an issue, for example, in Western blotting (immunoblot) and immunohistochemistry (IHC). By comparing the staining from the blocked antibody versus the antibody alone, one can see which staining is specific; Specific binding will be absent from the western blot or immunostaining performed with the neutralized antibody.

Format and storage :

Synthetic peptide was lyophilized with 100% acetonitrile and is supplied as a powder. Reconstitute with 0.1 ml DI water for a final concentration of 10 mg/ml.The purity is >90%,tested by HPLC and MS.Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions :

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

Pig
100%
Dog
100%
Bovine
91%
Horse
91%
Sheep
91%
Rabbit
0%
Chicken
0%
Xenopus
0%
Zebrafish
0%
High similarity Medium similarity Low similarity No similarity
Q04206 as Substrate
Site PTM Type Enzyme
M1 Acetylation
K37 Methylation
K37 Sumoylation
C38 S-Nitrosylation
S42 Phosphorylation
S45 Phosphorylation
K56 Ubiquitination
K62 Ubiquitination
T71 Phosphorylation
S75 Phosphorylation
K79 Ubiquitination
K93 Ubiquitination
S112 Phosphorylation
K122 Acetylation
K122 Ubiquitination
K123 Acetylation
K123 Ubiquitination
S131 Phosphorylation
T136 Phosphorylation
R174 Methylation
S180 Phosphorylation
R187 Methylation
K195 Ubiquitination
S205 Phosphorylation
K218 Acetylation
K218 Methylation
K218 Ubiquitination
K221 Acetylation
K221 Methylation
S238 Phosphorylation
S240 Phosphorylation
T254 Phosphorylation
S261 Phosphorylation
S269 Phosphorylation
S276 Phosphorylation P11309 (PIM1) , O94806 (PRKD3) , O75676 (RPS6KA4) , P17612 (PRKACA) , O75582 (RPS6KA5)
S281 Phosphorylation
T305 O-Glycosylation
T305 Phosphorylation
Y306 Phosphorylation
T308 Phosphorylation
K310 Acetylation
K310 Methylation
K310 Ubiquitination
S311 Phosphorylation Q05513 (PRKCZ)
K314 Acetylation
K314 Methylation
K314 Ubiquitination
K315 Acetylation
K315 Methylation
K315 Ubiquitination
S316 Phosphorylation P48729 (CSNK1A1)
S319 O-Glycosylation
T322 O-Glycosylation
S337 O-Glycosylation
S337 Phosphorylation
T352 O-Glycosylation
S374 O-Glycosylation
S374 Phosphorylation
S377 O-Glycosylation
T429 Phosphorylation
T435 Phosphorylation P28482 (MAPK1)
S468 Phosphorylation P49841 (GSK3B) , O14920 (IKBKB) , Q14164 (IKBKE)
S472 Phosphorylation
T505 Phosphorylation
S529 Phosphorylation P68400 (CSNK2A1) , P47710 (CSN1S1)
S536 Phosphorylation O15111 (CHUK) , O94806 (PRKD3) , Q9Y6K9 (IKBKG) , Q9UHD2 (TBK1) , Q9HCP0 (CSNK1G1) , Q16566 (CAMK4) , P51812 (RPS6KA3) , Q15418 (RPS6KA1) , Q00534 (CDK6) , O14920 (IKBKB) , P24723 (PRKCH) , Q14164 (IKBKE)
S543 Phosphorylation P68400 (CSNK2A1)
S547 Phosphorylation Q13315 (ATM)
IMPORTANT: For western blots, incubate membrane with diluted antibody in 5% w/v milk , 1X TBS, 0.1% Tween®20 at 4°C with gentle shaking, overnight.

在线咨询 To Top